
A

Precise Predictive Analysis for Discovering Communication
Deadlocks in MPI Programs

Vojtěch Forejt1, Diffblue Ltd.
Saurabh Joshi1, IIT Hyderabad
Daniel Kroening1, Department of Computer Science, University of Oxford and Diffblue Ltd.
Ganesh Narayanaswamy, Department of Computer Science, University of Oxford
Subodh Sharma, IIT Delhi

The Message Passing Interface (MPI) is the standard API for parallelization in high-performance and scientific
computing. Communication deadlocks are a frequent problem in MPI programs, and this paper addresses
the problem of discovering such deadlocks. We begin by showing that if an MPI program is single-path, the
problem of discovering communication deadlocks is NP-complete. We then present a novel propositional
encoding scheme that captures the existence of communication deadlocks. The encoding is based on modelling
executions with partial orders, and implemented in a tool called MOPPER. The tool executes an MPI program,
collects the trace, builds a formula from the trace using the propositional encoding scheme, and checks its
satisfiability. Finally, we present experimental results that quantify the benefit of the approach in comparison
to other analysers and demonstrate that it offers a scalable solution for single-path programs.

Additional Key Words and Phrases: single-path verification, MPI programs, deadlock discovery

1. INTRODUCTION
Distributed systems are often developed using the message passing paradigm, where
the only way to share data between processes is by passing messages over a network.
Message passing generally leads to modular, decentralized designs owing to its shared-
nothing-by-default model.

The Message Passing Interface (MPI) [Message Passing Interface Forum 2009] is
the lingua franca of high-performance computing (HPC) and remains one of the most
widely used APIs for building distributed message-passing applications.

However, message passing systems are hard to design as they require implementing
and debugging complex protocols. These protocols and their interleaved executions
are often non-trivial to analyse as the safety and liveness properties of such systems
are usually violated only during some intricate, low-probability interleavings. Given
the wide adoption of the MPI in large-scale studies in science and engineering, it is
important to have means to establish some formal guarantees, like deadlock-freedom,
on the behaviour of MPI programs.

In this work, we present an automated method to discover communication deadlocks
in MPI programs that use blocking and nonblocking (asynchronous) point-to-point com-

1The majority of this work was carried out when the author was employed and supported by the Department
of Computer Science, University of Oxford.

This work is supported by EPSRC EP/H017585/1, the H2020 FET OPEN project 712689 SC2 and ERC project
280053 “CPROVER”.
Authors’ address: Department of Computer Science, University of Oxford, Wolfson Building, Parks Road,
Oxford, OX1 3QD, UK.
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by
others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to
post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions
from permissions@acm.org.
c© YYYY ACM. 0164-0925/YYYY/01-ARTA $15.00
DOI: http://dx.doi.org/10.1145/0000000.0000000

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:2

munication calls (such as send and receive calls) and global synchronization primitives
(such as barriers). A communication deadlock (referred to simply as “deadlock” in this
paper), as described by Natarajan [1984], is “a situation in which each member process
of the group is waiting for some member process to communicate with it, but no member
is attempting to communicate with it”.

Establishing deadlock-freedom in MPI programs is hard. This is primarily due to
the presence of nondeterminism that is induced by various MPI primitives and the
buffering/arbitration effects in the MPI nodes and the network. For instance, a popular
choice in MPI programs to achieve better performance (as noted by Vakkalanka et al.
[2008]) is the use of receive calls with the MPI ANY SOURCE argument; such calls are
called “wildcard receives”. A wildcard receive in a process can be matched with any
sender targeting the process, thus the matching between senders and receivers is
susceptible to network delivery nondeterminism. MPI calls such as probe and wait
are sources of nondeterminism as well. This prevalence—and indeed, preference—for
nondeterminism renders MPI programs susceptible to the schedule-space explosion
problem.

Additional complexity in analysing MPI programs is introduced when control-flow
decisions are based on random data, or when the data communicated to wildcard
receives is used to determine the subsequent control-flow of the program. We call
such MPI programs multi-path programs; programs that are not multi-path are called
single-path. More formally, a program is single-path if for each process, the sequence of
instructions executed is the same no matter what data the process receives through
MPI calls, and from what processes. We focus on single-path programs in this paper.
The rationale for focussing on single-path programs is also found in numerous other
domains. For instance, the single-path property is the basis of recent work on verifying
GPU kernels [Leung et al. 2012].

Popular MPI debuggers or program correctness checkers such as [Luecke et al. 2002;
Hilbrich et al. 2012; Krammer et al. 2003; Haque 2006] only offer limited assistance
in discovering deadlocks in programs with wildcard receives. The debuggers/checkers
concern themselves exclusively with the send-receive matches that took place in the
execution under observation: alternate matches that could potentially happen in the
same execution are not explored, nor reasoned about.

On the more formal side, tools such as model checkers can discover bugs related
to nondeterministic communication by exploring all relevant matchings/interleavings.
However, such tools suffer from several known shortcomings. In some cases, the model
has to be constructed manually [Siegel 2007], while some tools have to re-execute the
entire program until the problematic matching is discovered [Vakkalanka 2010; Vo
et al. 2010]. These limitations prevent such tools from analysing MPI programs that
are complex, make heavy use of nondeterminism, or take long to run.

We analyse MPI programs under two different buffering modes: (i) the zero-buffering
model, wherein the nodes do not provide buffering and messages are delivered syn-
chronously, and (ii) the infinite-buffering model, under which asynchronously sent
messages are buffered without limit. These two models differ in their interpretation of
the MPI wait event. Under the zero-buffering model, each wait call associated with a
nonblocking send blocks until the message is sent and copied into the address space
of the destination process. Under the infinite-buffering model, each wait call for a
nonblocking send returns immediately (see Section 2).

Contribution. This paper presents the following novel results for single-path MPI
programs.

(1) First, we demonstrate that even for the restricted class of single-path programs, the
problem of deadlock discovery is NP-complete (Section 3).

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:3

(2) Second, we present a novel MPI analyser that combines a dynamic verifier with
a SAT-based analysis that leverages recent results by Alglave et al. [2013] on
propositional encodings of constraints over partial orders.

Our tool operates as follows: the dynamic verifier records an execution trace in
the form of a sequence of MPI calls. Then, we extract the per-process matches-before
partial order on those calls (defined in Section 2), specifying restrictions on the order in
which the communication calls may match on an alternative trace. We then construct
a sufficiently small over-approximate set of potential matches [Sharma et al. 2009]
for each send and receive call in the collected trace. Subsequently, we construct a
propositional formula that allows us to determine whether there exists a valid MPI run
that respects the matches-before order and yields a deadlock. In our implementation
of the propositional encoding, the potentially matching calls are modelled by equality
constraints over bit vectors. This facilitates Boolean constraint propagation (BCP) in
the SAT solver, resulting in good solving times.

We propose two alternative propositional encodings, both of which address the same
class of programs. The first encoding is more basic and yields smaller formulas on
programs with less communication structure. The second encoding exploits properties
of programs with a star-like communication pattern where a single process receives data
from multiple processes through an unbroken series of wildcard receive calls. A star-like
communication pattern is often employed in situations such as map and reduce where
the master process has to perform gather/reduce operations on data after mapping the
tasks to workers. We observe that programs that rely on point-to-point communication
primitives frequently adopt star-like communication patterns for performance reasons.
Star-like communication improves the utilization of interconnects and leads to increased
parallelism. An exemplar are the communication patterns observed in arithmetic
multigrid solvers that implement the master-worker communication pattern. Our
proposed encoding for star-like communication outperforms the basic encoding when
certain properties are met (explained in detail in Section 4.3).

Our approach is sound and complete for the class of single-path MPI programs and
the buffering models we consider, that is, our tool reports neither false alarms nor
misses any deadlock. Our experiments indicate a significant speedup compared to the
analysis time observed when using ISP, which is a dynamic analyser that enumerates
matches explicitly by re-running the program [Vakkalanka et al. 2008]. Note that unlike
our tool, ISP is able to handle multi-path programs.

Outline. The paper is organized as follows: We begin by introducing the necessary
definitions in Section 2. In Sections 3 and 4 we present the complexity results for the
studied problem and give the details of our propositional encodings. Section 5 presents
the experimental evaluation of our work. Finally, we discuss the relationship to the
related work in Section 6.

A preliminary version of this paper has been presented as a conference publica-
tion [Forejt et al. 2014]. In addition to improved presentation and proof, this paper
extends the original publication with:

— the encoding for star-like programs, which was not given in [Forejt et al. 2014], and
— a more comprehensive evaluation of the tool.

2. PRELIMINARIES
In this section we introduce the necessary definitions and formulate the problem we
study in this paper.

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:4

2.1. Single-Path Programs
We assume that programs are given as a collection ofN processes, denoted by P1, . . . , PN .
From now on, when N is used, it refers to the number of processes in the program.
In order to simplify the problem we consider, we will restrict our analysis to programs
in which each process executes its instructions in a fixed order. This is formalized as
follows.

Definition 2.1 (Single-Path Program). A single-path program is a program in which
the order of instructions executed by each of the processes Pi is identical in any run of
the program.

We remark that while the per-process instruction order is fixed, the program may
still have many different behaviors. In particular, the global schedule of the processes
may differ between runs; we do not fix the global ordering of instructions. Deadlocks
may abort runs prematurely. Data computed may depend on inputs as long as this does
not affect branches.

2.2. MPI Programs
For ease of presentation, we choose an “abstract” definition of MPI programs instead of
giving semantics for actual code. Intuitively, for each process, our abstraction disregards
all instructions except for MPI calls, and only keeps track of the sequence in which
the events are executed. Per process, this sequence is unique owing to the definition of
single-path programs. We denote the events in process Pi by ai,j , where j is the index
(i.e., the position within the sequence) at which the event occurs. We further use |Pi| for
the number of events in process i. As every MPI call gives rise to exactly one event, we
use the terms “event” and “MPI call” interchangeably. We define the per-process order
�po on events as follows: ai,j �po bk,` if and only if events ai,j and bk,` are from the same
process (that is, i = k), and the index of a is lower or equal to the index of b (that is,
j ≤ `).

The types of MPI calls or events that we permit to occur in an MPI program are as
follows.

— A nonblocking (resp. blocking) send from Pi to Pj indexed at program location k ≤
|Pi| is denoted by nS i,k(j) (resp. bS i,k(j)). We write just S when the distinction
between a blocking or nonblocking call is not important. The nonblocking calls return
immediately.

— Similarly, a nonblocking (resp. blocking) receive call, nRi,k(j) (resp. bRi,k(j)), in-
dicates that Pi receives a message from Pj . We write just R when the distinction
between a blocking or nonblocking call is not important. A wildcard receive is denoted
by writing ∗ in place of j.

— A blocking wait call, which returns on successful completion of the associated non-
blocking call, is denoted by Wi,k(hi,j), where hi,j indicates the index of the associated
nonblocking call from Pi. A wait call to a nonblocking receive will return only if a
matching send call is present and the message is successfully received in the destina-
tion address. By contrast, a wait call to a nonblocking send will return depending on
the underlying buffering model.

— A wait-all call Wi,k(hi,j1 , . . . hi,jn) can be seen as a syntactic shorthand for n consecu-
tive waits Wi,k(hi,j1), . . . ,Wi,k(hi,jn).

— We write Bi,j for the barrier calls in process i. Since barrier calls (in a process) syn-
chronise uniquely with a per-process barrier call from each process in the system,
all barrier matches are totally ordered. Thus, we use Bi,j(d) to denote the barrier
call issued by the process i that will be part of the d-th system-wide barrier call. The

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:5

process i issuing the barrier call blocks until all the other processes also issue the
barrier d.

For any of the calls, we replace the program location by “−” when it is not relevant.

2.3. Buffering in MPI Programs
According to the standard [Message Passing Interface Forum 2009] a nonblocking send
is completed as soon as the message is copied out of the sender’s address space. Thus,
under the zero-buffering model the wait call will return only after the sent message
is successfully received by the receiver since there is no underlying communication
subsystem to buffer the message. By contrast, under the infinite-buffering model the
sent message is guaranteed to be buffered by the underlying subsystem. We assume,
without loss of generality, that message buffering happens immediately after the return
of the nonblocking send, in which case the associated wait call will return immediately.

Let C be the set of all MPI calls in the program, and Ci the set of MPI calls in Pi, i.e.,
the set of MPI calls that Pi may execute (note that some calls might not be executed
if there is a deadlock). A match is a subset of C containing those calls that together
form a valid communication. A set containing matched send and receive operations, or
a set of matched barrier operations, or a singleton set containing a wait operation are
all matches.

Furthermore, we define a matches-before partial order �mo, which captures a partial
order among communication operations in Ci. We refer the reader to [Vakkalanka et al.
2008] for complete details on the matches-before order (called completes-before therein).
This order is different for the zero-buffering and infinite-buffering model. For the zero-
buffering model, it is defined to be the smallest order satisfying that for any a, b ∈ C,
a ≺mo b if2 a ≺po b and one of the following conditions is satisfied:

— a is blocking;
— a, b are nonblocking send (or receive) calls to (from) the same destination (source);
— a is a nonblocking wildcard receive call and b is a receive call sourcing from Pk (for

some k), or a wildcard receive;
— a is a nonblocking call and b is the associated wait call (or an associated wait-all call).

When a is a nonblocking receive call sourcing from Pk, event b is a nonblocking
wildcard receive call and the MPI program is at a state where both the calls are issued
but not matched yet, then a ≺mo b is conditionally dependent on the availability of a
matching send for a (as noted in [Vakkalanka et al. 2008]). Due to its schedule-dependent
nature, we ignore this case in the construction of our encoding. In our experience, we
have not come across a benchmark that issues a conditional matches-before edge.

In the case of the infinite-buffering model, the only change is that the rule of the last
item in the list above does not apply when a is the nonblocking send; this corresponds
to the fact that all nonblocking send calls are immediately buffered, and so all the wait
calls for such sends return immediately.

Since the only difference between the finite- and infinite-buffering model is the way
the order ≺mo is defined, most of the constructions we present apply for both models.
When it is necessary to make a distinction, we will point this out to the reader.

2.4. Semantics of MPI Programs
We now define the behaviour of MPI programs. The current state q = 〈I,M〉 of the
system is described by the set of calls I that have been issued, and a set of calls M ⊆ I
that were issued and subsequently matched. To formally define a transition system

2We follow standard notation and use a ≺mo b to denote that a �mo b and a 6= b. Similarly for �po.

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:6

N : total number of processes, denoted P1, . . . , PN
|P |: number of locations in P .
nS i,k(j): non-blocking send from Pi (at loc. k) to Pj .
bS i,k(j): blocking send from Pi (at loc. k) to Pj
nRi,k(j): non-blocking receive by Pi (at loc. k) from Pj , or from any process if j = ∗
bRi,k(j): blocking receive by Pi (at loc. k) from Pj , or from any process if j = ∗
Wi,k(hi,j): wait in process Pi (at loc. k) for a non-blocking call at loc. j to finish
Wi,k(hi,j1 , . . . hi,jn): as above, but wait for all calls at locations j1, . . . , jn
Bi,j(d): d-th barier, Pi blocks at loc. j until all processes issue the associated barrier
�po: per-process order; linear when restricted to a single process
�mo: matches-before order; induced by delivery guarantees of MPI protocol
Issuable(〈I,M〉): issuable calls, where I and M are issued and matched, resp.
Matchable(〈I,M〉): matchable calls, where I and M are issued and matched, resp.

Fig. 1. Reference of MPI calls and relevant definitions

for an MPI program, we need to reason about the calls that can be issued or matched
in q. The first is denoted by the set Issuable(q), which is the set of all x ∈ C \ I satisfying
the following two conditions: (i) for all y with y ≺po x we have y ∈ I, and (ii) for all
blocking z (i.e., any wait, barrier and blocking send and receive) with z ≺mo x we have
z ∈M . We say that a set m ⊆ I \M of calls is ready in q = 〈I,M〉 if for every a ∈ m and
every s ≺mo a we have s ∈M . We then define

Matchable(q) = {{a, b} ready in q | ∃i, j : a = Si,−(j), b = Rj,−(i/∗)} ∪
{{a} ready in q | ∃i : a = Wi,−(hi,−)} ∪
{{a1, . . . , aN} ready in q | ∃d∀i ∈ [1, N] : ai = Bi,−(d)}

The semantics of an MPI program P is given by a finite state machine S(P) =
〈Q, q0,A, δ〉 where

—Q ⊆ 2C × 2C is the set of states where each state q is a tuple 〈I,M〉 satisfying M ⊆ I,
with I being the set of calls that were so far issued by the processes in the program,
and M being the set of calls that were already matched.

— q0 = 〈∅, ∅〉 is the starting state.
—A ⊆ 2C is the set of actions.
— δ ⊆ Q×A → Q is the transition function which is the union of two sets of transitions

— issue transitions defined by 〈I,M〉 α−→ 〈I ∪ α,M〉, if α ⊆ Issuable(〈I,M〉) and |α|=1.
— match transitions defined by 〈I,M〉 α−→ 〈I,M ∪ α〉, if α ⊆ Matchable(〈I,M〉).

The set of potential matches M is defined by M =
⋃
q∈Σ Matchable(q), where Σ ⊆ Q is the

set of states that can be reached on some trace starting in q0. A trace is a sequence of
states and transitions q0

α0−→ q1
α1−→ . . .

αn−1−−−→ qn beginning with q0 such that qi
ai−→ qi+1

for every 0 ≤ i < n.
In a single-path MPI program, all possible execution traces can be generated from a

single non-deadlocking execution trace. This is because, following the definition of a
single-path MPI program, the set of control-flow paths of the program that contains
communication calls is a singleton set. Hence, a single run leads to the execution
of all the communication calls in the program. Consequently, M and Q are sound
over-approximations of the possible matches and states of the program.

Example 2.2 (Running example). Consider the C MPI program from Figure 2. For
three processes, we get a program P whose MPI calls (forming the set C) are depicted
in Figure 3. Then �po and �mo are both equal to the smallest partial order containing

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:7

include <mpi.h>
int main(int argc, char **argv) {
int rank, size, sbuff, rbuff;
MPI_Status status;
MPI_Init(&argc, &argv);
MPI_Comm_rank(MPI_COMM_WORLD, &rank);
MPI_Comm_size(MPI_COMM_WORLD, &size);
if(rank == 0) {

for (int i = 1; i < size-1 ; i++)
MPI_Recv(&rbuff, 1, MPI_INT, MPI_ANY_SOURCE, 1, MPI_COMM_WORLD, &status);

MPI_Recv(&rbuff, 1, MPI_INT, 2, 1, MPI_COMM_WORLD, &status);
}
else

MPI_Send(&sbuff, 1, MPI_INT, 0, 1, MPI_COMM_WORLD);
MPI_Finalize();

}

Fig. 2. The MPI C source code for the running example.

P1 P2 P3

b1 : bR1,1(∗) a1 : bS2,1(1) a2 : bS3,1(1)
b2 : bR1,2(2)

Fig. 3. The MPI program for the running example, for three processes.

(b1, b2). Considering a state q = 〈{a1, b1}, ∅〉 of S(P), we have Issuable(q) = {a2} and
Matchable(q) = {{a1, b1}}. The set M contains elements {a1, b1}, {a2, b1}, and {a1, b2}.
Some of the traces in S(P) are deadlocking, for example the following:

〈∅, ∅〉 {a1}−−−→ 〈{a1},∅〉
{b1}−−−→ 〈{a1, b1}, ∅〉

{a1,b1}−−−−−→ 〈{a1, b1}, {a1, b1}〉
{a2}−−−→ 〈{a1, b1, a2}, {a1, b1}〉

{b2}−−−→ 〈{a1, b1, a2, b2}, {a1, b1}〉

2.5. The Deadlock Discovery Problem
A state 〈I,M〉 is deadlocking if M 6= C and it is not possible to make any (issue or
match) transition from 〈I,M〉. A trace is deadlocking if it ends in a deadlocking state.
In this paper, we are interested in finding deadlocking traces and the problem we study
is formally defined as follows.

Definition 2.3. Given an MPI program P, the deadlock discovery problem asks
whether there is a deadlocking trace in S(P).

3. COMPLEXITY OF THE PROBLEM
In this section we prove the following theorem.

T H E O R E M 3.1. The deadlock discovery problem is NP-complete, for both the finite-
and infinite-buffering model.

The membership in NP follows easily. All traces are of polynomial size, because after
every transition, new elements are added to the set of issued or matched calls, and
maximal size of these sets is |C|. Hence, we can guess a sequence of states and actions,
and check that they determine a deadlocking trace. This check can be performed in
polynomial time, because the partial order �mo can be computed in polynomial time, as
well as the sets Issuable(q) and Matchable(q), for any given state q.

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:8

Pposi Pnegi Pdeci P claj P var P res P sat

bSposi,1(deci) bSnegi,1(deci) bRdeci,1(∗) bRclaj ,1(∗) bS var,1(res) bRres,1(∗) bRsat,1(cla1)

∀ck3xi : ∀ck3¬xi : bSdeci,2(var) bS claj ,2(sat) bRvar,2(∗) bRres,2(sat)
...

bSposi,−(clak) bSnegi,−(clak) bRdeci,3(∗) bRclaj ,3(∗)
... bRsat,m(clam)

... bRvar,n+1(∗) bS sat,m+1(res)
bRclaj ,|cj |+1(∗)

Fig. 4. The MPI program P(Ψ). Here, i ranges from 1 to n and j ranges from 1 to m.

Proving the lower bound of Theorem 3.1 is more demanding. We provide a reduction
from SAT; the reduction applies to both finite- and infinite-buffering semantics, because
it only uses the calls whose semantics is the same under both models. Let Ψ be a
CNF formula over propositional variables x1, . . . , xn with clauses c1, . . . , cm, where each
clause ci contains |ci| literals.

We define an MPI program P(Ψ) as follows. To make the proof easier to read, we
introduce auxiliary variables, and use posi = i, neg i = n+i, deci = 2 ·n+i, claj = 3 ·n+j,
var = 3 · n+ j + 1, res = 3 · n+ j + 2 and sat = 3 · n+ j + 3 for 1 ≤ i ≤ n and 1 ≤ j ≤ m
to refer to distinct process indices. Communication in process Pposi (or Pneg i) will
correspond to positive (or negative) values of xi. The process Pdeci will ensure that at
most one of Pposi and Pneg i can communicate before a certain event, making sure that
a value of xi is simulated correctly.

Further, for each 1 ≤ j ≤ m we create a process P claj , and we also create three
distinguished processes, P var , P res and P sat . Hence, the total number of processes is
3 · n+m+ 3.

The communication of the processes is defined in Figure 4. In the figure, the expres-
sion ∀ck3xi : bSpos,−(clak) is a shorthand for several consecutive sends, one to each
P clak such that xi ∈ ck. The order in which the calls are made is not essential for the
reduction.

To establish the lower bound for Theorem 3.1, we need to prove the following.

L E M M A 3.2. A given CNF formula Ψ is satisfiable if and only if the answer to the
deadlock discovery problem for P(Ψ) is yes.

The crucial observation for the proof of the lemma is that for a deadlock to occur, the
call bS sat,m+1(res) must be matched with bRres,1(∗): in such a case, the calls bRres,2(s)
and bS var ,1(res) cannot find any match. In any other circumstance a deadlock cannot
occur, in particular note that any Sposi,−(clak), and Snegi,−(clak) can find a matching
receive, because there are exactly |ck| sends sent to every P clak.

For bS sat,m+1(res) and bRres,1(∗) to form a match together, calls bRsat,j(claj), 1 ≤ j ≤
m, must find a match before P var starts to communicate. To achieve this, having a
satisfying valuation ν for Ψ, for every 1 ≤ i ≤ n we match bSposi,1(deci) or bSnegi,1(deci)
with bRdec,1(∗), depending on whether xi is true or false under ν. We then match the
remaining calls of Pposi or Pneg i, and because ν is satisfying, we know that eventually
the call bS claj ,2(sat) can be issued and matched with bRsat,j(claj), for all j.

On the other hand, if there is no satisfying valuation for Ψ, then unless for some i both
the calls bSposi,1(deci) and bSnegi,1(deci) find a match, some bS claj ,2(sat) (and hence also
bRsat,j(claj)) remains unmatched. However, for both bSposi,1(deci) and bSnegi,1(deci) to
match, bSdeci,2(var) must match some receive in P var , which violates the necessary
condition for the deadlock to happen, i.e., that P var does not enter into any communica-
tion.

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:9

Ppos1 Pneg1 Pdec1
bSpos1,1(dec1) bSneg2,1(dec1) bRdec1,1(∗)
bSpos1,2(cla1) bSneg1,2(cla2) bSdec1,2(var)

bRdec1,3(∗)

Ppos1 Pneg1 Pdec1
bSpos1,1(dec1) bSneg2,1(dec1) bRdec1,1(∗)
bSpos1,2(cla1) bSdec1,2(var)
bSpos1,3(cla2) bRdec1,3(∗)

P cla1 P cla2 P var P res P sat

bRcla1,1(∗) bRcla2,1(∗) bS var,1(res) bRres,1(∗) bRsat,1(cla1)
bS cla1,2(sat) bS cla2,2(sat) bRvar,2(∗) bRres,2(sat) bRsat,2(cla2)

bRvar,3(∗) bS sat,3(res)

Fig. 5. Examples of the reduction for the formulas (x1) ∧ (¬x1) (top left and bottom) and (x1) ∧ (x1) (top
right and bottom).

Example 3.3. Consider an unsatisfiable formula (x1)∧ (¬x1). The resulting MPI pro-
gram is given in Figure 5 (top left and bottom). The MPI program is not deadlocking: in-
tuitively, the reason is that the call bS var ,1(res) will be matched before bS sat,3(res). This
is because for bS sat,3(res) to match, both bRcla1,1(∗) and bRcla2,1(∗) must be matched,
which requires that bS var ,1(res) is matched.

On the other hand, a satisfiable formula (x1) ∧ (x1) yields the program from Figure 5
(top right and bottom), which can deadlock by first all calls of Ppos1 finding a match,
and then all calls of P sat finding a match. This results in bRres,2(sat) not being able to
find any match.

4. DEADLOCK DISCOVERY USING SAT
4.1. Propositional Encoding
In this section we introduce a propositional encoding for solving the deadlock discovery
problem. Intuitively, a satisfying valuation for the variables in the encoding provides a
set of calls matched on a trace, a set of unmatched calls that can form a match, and a set
of matches together with a partial order on them, which contains enough dependencies
to ensure that the per-process partial order is satisfied.

We will restrict the presentation to the problem without barriers, since barriers can
be removed by preprocessing, where for barrier calls Bi,−(d) and Bj,−(d) and for any
two calls a and b such that a ≺mo Bi,−(d) and Bj,−(d) ≺mo b we assume a ≺mo b. The
barrier calls can then be removed without introducing spurious models.

Our encoding contains variables ma and ra for every call a. Their intuitive meaning
is that a is matched or issued (“ready”) to be matched whenever ma or ra is true,
respectively. Supposing we correctly identify the set of matched and issued calls on a
trace, we can determine whether a deadlock has occurred. For this to happen, there must
be some unmatched call, and no potential match can take place (i.e., for any potential
match, some call was either used in another match, or was not issued yet). Thus, we
must ensure that we determine the matched and issued calls correctly. We impose a
preorder on the calls, where a occurs before b in the preorder if a finds a match before b.
To capture the preorder, we use the variables tab to denote that a matches before b, and
sab which stipulate that a call a matches a receive b and hence they must happen at the
same time; note that this applies in the infinite-buffering case as well.

Finally, we must ensure that tab and sab correctly impose a preorder. We use a bit
vector clka of size dlog2 |C|e for every call a, denoting the “time” at which the call a
happens, and stipulate that clka < clk b (resp. clka = clk b) if tab (resp. sab) is true.
Intuitively, clka represents a time that the call a finds its matching call. Nevertheless,
this number might not exactly correspond to a position of a match in a trace. This is
because our encoding admits satisfying assignments that are not a total order (i.e.,

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:10

Partial order
∧
b∈C

∧
a∈Imm(b)

tab (1)

Unique match for send
∧

(a,b)∈M+

∧
c∈M+(a),c 6=b

(
sab → ¬sac

)
(2)

Unique match for receive
∧

(a,b)∈M+

∧
c∈M+(b),c 6=a

(
sab → ¬scb

)
(3)

Match correct
∧
a∈R

(
ma →

∨
b∈M+(a)

sba
)
∧
∧
a∈S

(
ma →

∨
b∈M+(a)

sab
)

(4)

Matched only
∧

α∈M+

(
sα →

∧
a∈α

ma

)
(5)

No match possible
∧

α∈M+

(∨
a∈α

(ma ∨ ¬ra)
)

(6)

All ancestors matched
∧
b∈C

(
rb ↔

∧
a∈Imm(b)

ma

)
(7)

Not all matched
∨
a∈C
¬ma (8)

Match only issued
∧
a∈C

(
ma → ra

)
(9)

Clock equality
∧

(a,b)∈M+

(
sab → (clka = clk b

)
(10)

Clock difference
∧
a,b∈C

(
tab → (clka < clk b)

)
(11)

Fig. 6. The SAT encoding for the deadlock discovery. Here, empty conjunctions are true and empty disjunc-
tions are false.

intuitively, two matches can happen at the same time), and in which there are “gaps”
between two matching events.

As part of the input, our encoding requires a set M+ ⊇ M containing sets of calls
that are type-compatible (i.e., all α that can be contained in some Matchable(q) if we
disregard the requirement for α to be ready). The reason for not starting directly with
M is that the problem of deciding whether a given set α is a potential match, i.e.,
whether α ∈ M, is NP-complete. This result can be obtained as a simple corollary of
our construction for Lemma 3.2. Hence, in any practical implementation we must start
with M+, since computing the set M is as hard as the deadlock discovery problem itself.
We will give a reasonable candidate for M+ in the next section.

The formal definition of the encoding is presented in Figure 6. In the figure, S and
R are the sets containing all send and receive calls, respectively, Imm(a) = {x|x ≺mo a,
∀z : x �mo z �mo a⇒ z ∈ {x, a}} stands for the set of immediate predecessors of a, and
M+(a) =

⋃
{b | ∃α ∈ M+ : a, b ∈ α} \ {a} is the set of all calls with which a can form a

match. Further, clka = clk b (resp. clka < clk b) are shorthands for the formulas that are
true if and only if the bit vector for a encodes the value equal to (resp. lower than) the
value of the bit vector for b. The formula constructed contains O(|C|2) variables, and its
size is in O(|C|3).

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:11

(1): tb1b2
(2): (sa1b1 → ¬sa1b2) ∧ (sa1b2 → ¬sa1b1)
(3): (sa1b1 → ¬sa2b1) ∧ (sa2b1 → ¬sa2b1)
(4):

(
ma1 → (sa1b1 ∨ sa1b2)

)
∧
(
ma2 → sa2b1

)
∧
(
mb1 → (sa1b1 ∨ sa2b1

)
∧
(
mb2 → sa1b2

)
(5):

(
sa1b1 → (ma1 ∧mb1)

)
∧
(
sa1b2 → (ma1 ∧mb2)

)
∧
(
sa2b1 → (ma2 ∧mb1)

)
(6): (ma1 ∨ ¬ra1 ∨mb1 ∨ ¬rb1) ∧ (ma1 ∨ ¬ra1 ∨mb2 ∨ ¬rb2) ∧ (ma2 ∨ ¬ra2 ∨mb1 ∨ ¬rb1)
(7): rb2 ↔ mb1
(8): ¬ma1 ∨ ¬ma2 ∨ ¬mb1 ∨ ¬mb2
(9): (ma1 → ra1) ∧ (ma2 → ra2) ∧ (mb1 → rb1) ∧ (mb2 → rb2)

(10):
(
sa1b1 →

(
(xa1,1 ↔ xb1,1) ∧ (xa1,2 ↔ xb1,2)

))
∧
(
sa1b2 →

(
(xa1,1 ↔ xb2,1)

∧ (xa1,2 ↔ xb2,2)
))
∧
(
sa2b1 →

(
(xa2,1 ↔ xb1,1) ∧ (xa2,2 ↔ xb1,2)

))
(11): tb1b2 →

(
(¬xb1,1 ∧ xb2,1) ∨

(
(xb1,1 ↔ xb2,1) ∧ (¬xb1,2 ∧ xb2,2)

))
[. . .]

Fig. 7. Propositional encoding for the running example.

Example 4.1. Consider the example program P from Example 2.2. The formula
resulting from the program is given in Figure 7 (with part of constraint (11) omitted).
For all calls c, the value clk c is represented in the little-endian format as xc,1xc,2. The
reader can easily verify that the assignment that assigns true to exactly the following
propositions is satisfying: tb1b2 , sa1b1 , ma1 , mb1 , ra1 , ra2 , rb1 , rb2 , and xb2,2. This means
that there is a deadlocking trace.

4.2. Correctness of the Encoding
The correctness of the encoding is formally established by Lemmas 4.2 and 4.4.

L E M M A 4.2. For every deadlocking trace there is a satisfying assignment to the
variables in the encoding.

P R O O F . Given a deadlocking trace, we construct the satisfying assignment as
follows. We set ma to true if and only if a is matched on the trace, and ra true if and
only if it is matched or if for every b ≺mo a, mb is true. This makes sure the constraints
(6)–(9) are satisfied.

We assign sab to true if and only if {a, b} occurs as a match on the trace. This ensures
satisfaction of constraints (2)–(5). Further, let α1α2 . . . be the sequence of actions under
which match transitions are taken on the trace. We stipulate tab if a ∈ αi and b ∈ αj for
i < j. We also set clka = i for every a ∈ αi and every i. This ensures satisfaction of the
remaining constraints.

The following lemma follows easily from constraints (2) and (3).

L E M M A 4.3. In every satisfying assignment to the variables in the encoding we
have that for every a, if sab and sab′ are true, then b = b′, and also if sba and sb′a are true,
then b = b′.

L E M M A 4.4. For every satisfying assignment to the variables in the encoding there
is a deadlocking trace.

P R O O F . Given a satisfying assignment, we construct the trace as follows. Let A be
the set of all sends and waits such that a ∈ A if and only if ma is true, and let a1 . . . aK
be an ordered sequence of elements in A such that for any ai and aj , if clkai < clkaj ,
then i < j. We further define a sequence θ = α1 . . . αK , where every αi contains ai, and
if ai is a send, then αi also contains the unique receive bi such that saibi is true. Such
bi always exists, and is unique by Lemma 4.3. By (10) the sequence θ satisfies that

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:12

whenever a ∈ αi and b ∈ αj and clka < clk b, then i < j. Moreover, for any c we have
that the proposition mc is true if and only if c occurs in some αi; this follows by the
construction of A and by (4) and (5).

We define a trace from the sequence θ by stipulating that it visits the states

qi = 〈Ii,Mi〉 = 〈 {y | ∃x �po y : x ∈
⋃

1≤`≤i

α`} ,
⋃

1≤`≤i

α` 〉

for 0 ≤ i ≤ K. The part of the trace from qi to qi+1 is defined to be

qi
{bi,1}−−−−→ 〈Ii ∪ {bi,1},Mi〉

{bi,2}−−−−→ . . .
{bi,ni

}
−−−−→ 〈Ii ∪ {bi,1, . . . bi,ni

},Mi〉
αi+1−−−→ qi+1

where all except for the last transition are issue transitions, where {bi,1, . . . , bi,ni
} =

{y | ∃x �po y : x ∈ αi+1} \ {y | ∃x �po y : x ∈
⋃

1≤`≤i α`}, and where if bi,j ≺po bi,`, then
j < `.

We now argue that the sequence above is indeed a valid trace in S(P). First, q0 =
〈∅, ∅〉. Let i be the largest number such that the sequence from q0 up to qi is a valid
trace. Let j be the largest number such that the extension of this trace from qi up to
〈I,M〉 = 〈Ii ∪ {bi,1, . . . bi,j},Mi〉 is a valid trace. We analyse the possible values of j,
showing that each leads to a contradiction.

— Suppose 0 ≤ j < ni. First, note that bi,j+1 6∈ I ∪M , because bi,j+1 does not occur in
{y | ∃x �po y : x ∈

⋃
1≤`≤i α`}. We need to show that bi,j+1 ∈ Issuable(〈I,M〉) (see

page 6 for the definition). Consider any a ∈ C.
If a ≺po bi,j+1, then by the definition of the sequence bi,1, . . . bi,ni

the element a has
been issued already.
If a ≺mo bi,j+1 and a is blocking, then by the definition of ≺mo we have a ≺mo c for
c ∈ αi+1 such that bi,j+1 ≺po c. By applying (1) and (11), possibly multiple times, we
establish that clka < clk c. Further, for any x and y we have that if rx or mx is true
and y ≺mo x, then my is true; this follows from constraints (7) and (9). Hence, ma is
true, and so a must be contained in some αk for k < i+ 1.
Consequently, bi,j+1 ∈ Issuable(〈I,M〉).

— Suppose j = ni. We have argued above that for every element b ∈ αi+1 and every
a ≺mo b we have a ∈ M . Also, b ∈ I \M , and so αi+1 is ready in 〈I,M〉. Finally,
we defined αi+1 to be either a singleton set containing a wait, or a set containing
compatible send and receive, hence, αi+1 ∈ Matchable(〈I,M〉).

Finally, we argue that the trace is deadlocking. By (8) and the construction of the
sequence θ we have that MK (C. We show that from qK = 〈IK ,MK〉 it is not possible
to make a match transition, even after possibly making a number of issue transitions.
This proves that there is a deadlocking trace. Suppose that it is possible to make a
match transition, and let us fix a suffix qK

{b1}−−−→ q̂1
{b2}−−−→ q̂2 . . .

{bn}−−−→ q̂n
α−→ q̄ where

all transitions except for the last one are issue transitions. Note that because q̂n =
〈IK ∪ {b1, . . . , bn},MK〉, for the transition under α to exist it must be the case that for
any b ∈ α and any a ≺mo b we have a ∈MK . But then by (7) all b ∈ α satisfy that rb is
true, and by (6) we get that there is b ∈ α for which mb is true, and so b ∈ MK , which
contradicts that the match transition under α can be taken in q̂n.

4.3. Alternative Propositional Encoding for Programs with Many Wildcard Receives
Our case-studies show that a common pattern in MPI programs is that a designated
process receives instructions from multiple other processes using wildcard receive calls.
To improve the performance for this scenario, we give an alternative propositional
encoding. The basic idea of the encoding is that for consecutive wildcard receives in one

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:13

process, it is not necessary to know which send was matched to each respective receive,
but instead it is sufficient to know the set of sends that together match the consecutive
receives.

We define a multi-receive x to be a maximal set of bR(∗) satisfying the following:

— all elements of x are from the same process.
— for every a, b ∈ x and c 6∈ x we have that if a ≺mo c (resp. c ≺mo a), then b ≺mo c

(resp. c ≺mo b). Intuitively, the multi-receive x represents a maximal contiguous
sequence of wildcard receives in a process.

We say that a multi-receive is matched if all elements of x are matched.
Let R be a set of all multi-receives. We use C̄ = C \

⋃
R for all calls that are not part

of any multi-receive.
We also need to modify the function Imm; for this purpose, we define a function ImmR

where for all b ∈ R∪ C̄ we define ImmR(b) to contain all a such that one of the following
holds:

— a, b ∈ C̄ such that a ∈ Imm(b)
— a ∈ R, b ∈ C̄ and for some c ∈ a we have c ∈ Imm(b)
— a ∈ C̄, b ∈ R and for some d ∈ b we have a ∈ Imm(d)
— a, b ∈ R and for some c ∈ a and d ∈ b we have c ∈ Imm(d)

We similarly extend M+ to M+
R as follows: we put to M+

R all sets from M+ that only
contain elements of C̄, and also, for every {a, b} ∈M+ with b ∈ c for some c ∈ R we put
{a, c} to M+

R.
For the alternative encoding, we use atomic propositions ma, ra, tab for all a, b ∈ R∪ C̄.

We also use one bit-vector clka for every a ∈ C̄, and two bit-vectors, clk−a and clk+
a ,

for each a ∈ R to indicate the time when the first and the last event of the multi-
receive a matched, respectively. To simplify the notation, for a ∈ C̄ we sometimes (e.g.,
in constraint (24)) refer to clka by clk+

a or clk−a . We also introduce an atomic proposition
sab for all a ∈ S and b ∈ R ∪ C̄ such that {a, b} ∈M+

R.
Since the encoding is based on matching several sends to a single multi-receive, we

need to introduce constraints that enforce the correct number of sends to be matched.
To this extent, we define card(a) to be 1 for every a ∈ C̄, and |a| for every a ∈ R. With
atmost(k, Z) (resp. exactly(k, Z)) where Z is a set of propositional variables, we denote
propositional constraints that are true if and only if at most (resp. exactly) k many
propositional variables from the set Z are true. These constraints are called cardinality
constraints. There is a variety of propositional encodings for cardinality constraints,
see [Bailleux and Boufkhad 2003; Frisch and Giannaros 2010] for an overview.

The full propositional encoding for programs with wildcard receives is presented in
Figure 8. As in the original encoding, the formula constructed contains O(|C|2) variables,
and its size is in O(|C|3).

Example 4.5. We illustrate the approach on the running example. In order to discuss
the details of the encoding, we consider the case when N = 4. The program is given in
the following table:

P1 P2 P3 P4

b1 : bR1,1(∗) a1 : bS 2,1(1) a2 : bS 3,1(1) a3 : bS 4,1(1)
b2 : bR1,2(∗)
b3 : bR1,3(2)

There is a single multi-receive, x = {b1, b2}. The atomic propositions we use are

— txb3 , sa1x, sa2x, sa3x, sa1b3 , and

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:14

Partial order *
∧

b∈R∪C̄

∧
a∈ImmR(b)

tab (12)

Maximal match count
∧

b∈R∪C̄

atmost
(
card(b), {sab | a ∈M+

R(b)}
)

(13)

∧
a∈R∪C̄

atmost
(
card(a), {sab | b ∈M+

R(a)}
)

(14)

Match correct
∧

b∈R∪C̄

(
mb ↔ exactly

(
card(b), {sab | a ∈M+

R(b)}
))

(15)

∧
a∈R∪C̄

(
ma ↔ exactly

(
card(a), {sab | b ∈M+

R(a)}
))

(16)

No match possible *
∧

α∈M+
R

(∨
a∈α

(ma ∨ ¬ra)
)

(17)

All ancestors matched *
∧

b∈R∪C̄

(
rb ↔

∧
a∈ImmR(b)

ma

)
(18)

Not all matched *
∨

a∈R∪C̄

¬ma (19)

Match only issued *
∧

a∈R∪C̄

(
ma → ra

)
(20)

∧
(a,b)∈M+

R

(
sab → (ra ∧ rb)

)
(21)

Clock equality for C̄ *
∧

(a,b)∈M+
R∩(S×(R\R))

(
sab → (clka = clk b)

)
(22)

Clock equality for R
∧

(a,b)∈M+
R∩(S×R)

(
sab → (clk−b ≤ clka ≤ clk+

b)
)

(23)

Clock difference *
∧

a,b∈R∪C̄

(
tab → (clk+

a < clk−b)
)

(24)

Fig. 8. The alternative SAT encoding for the deadlock discovery. The rules taken marked with ‘*’ also occur
in the encoding in Figure 6, or are a straightforward modification.

—my and ry for y ∈ {a1, a2, a3, x, b3}
— variables for bit-vectors (of size 3) clkai for 1 ≤ i ≤ 3, clk b3 , clk−x and clk+

x .
— auxiliary variables for encoding the atmost and exactly constraints.

We highlight some of the parts that differ significantly from the previous encoding (for
space reasons we reuse the abbreviations for atmost , exactly and bit-vector comparison):
(13): atmost(2, {sa1x, sa2x, sa3x})
(14): atmost(1, {sa1x, sa1b1}) ∧ atmost(1, {sa2x}) ∧ atmost(1, {sa3x})
(15): mx ↔ exactly(2, {sa1x, sa2x, sa3x})
(16):

(
ma1↔exactly(1, {sa1x, sa1b1})

)
∧
(
ma2↔exactly(1, {sa2x})

)
∧
(
ma3↔exactly(1, {sa3x})

)
(23):

(
sa1x→(clk−x≤clka1≤clk

+
x)
)
∧
(
sa2x→(clk−x≤clka2≤clk

+
x)
)
∧
(
sa3x→(clk−x≤clka3≤clk

+
x)
)

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:15

4.4. Correctness of the Alternative Encoding
The correctness of the encoding is formally established by Lemmas 4.6 and 4.8. The
proofs of the lemmas are essentially straightforward extensions of proofs of Lemmas 4.2
and 4.4, but we present them for the sake of completeness and because they provide
insight into intuitions behind the encoding.

L E M M A 4.6. For every deadlocking trace there is a satisfying assignment to the
variables in the encoding from Figure 8.

P R O O F . Given a deadlocking trace, we construct the satisfying assignment as
follows. We set ma to true if and only if a is matched on the trace, and ra true if and
only if it is matched or if for every b ∈ ImmR(a), the propositional variable mb is true.
This ensures that the constraints (17)–(20) are satisfied.

We assign sab to true if and only if:

— a, b ∈ C̄ and a matches b on the trace, or
— a ∈ C̄ and b ∈ R and a matches an element of b on the trace.

This ensures satisfaction of constraints (13)–(16) and (21).
Further, let α1α2 . . . be the sequence of actions under which match transitions are

taken on the trace. For every i and a ∈ αi ∩ C̄ we set clka = i, and for a ∈ αi ∩
⋃
R and

x 3 a we set clk−x = min{j | ∃b ∈ x : b ∈ αj} and clk+
x = max{j | ∃b ∈ x : b ∈ αj}. This

ensures satisfaction of the constraints (22) and (23).
We set tab to true if and only if:

— a, b ∈ C̄ and a ∈ αi and b ∈ αj for i < j;
— a ∈ C̄, b ∈ x for some x ∈ R, and a ∈ αi for i < min{j | ∃c ∈ x : c ∈ αj};
— a ∈ x for some x ∈ R and b ∈ C̄ where b ∈ αi for i > max{j | ∃c ∈ x : c ∈ αj}; or
— a ∈ x for some x ∈ R and b ∈ y for some y ∈ R where max{j | ∃c ∈ x : c ∈ αj} <

min{j | ∃c ∈ y : c ∈ αj}.

This ensures satisfaction of constraint (24), and also of constraint (12) due to the
definition of ImmR.

To simplify the notation, for an element a contained in some x ∈ R we say that ra
(resp. ma) is true instead of saying that rx (resp. mx) is true.

L E M M A 4.7. In any satisfying assignment to the variables in the encoding from
Figure 8, and for any a and b such that a ≺po b the following holds. If rb is true, then ra
is also true.

P R O O F . The proof follows from constraints (17) and (20).

L E M M A 4.8. For every satisfying assignment to the variables in the encoding from
Figure 8 there is a deadlocking trace.

P R O O F . Given a satisfying assignment, we construct the trace as follows. Let A be
the set of all sends and waits such that a ∈ A if and only if ma is true, and let a1 . . . aK
be an ordered sequence of elements in A such that for any ai and aj , if clkai < clkaj ,
then i < j. We further define a sequence θ = α1 . . . αK inductively by letting αi contain
ai and in addition if ai is a send, then for the unique bi such that saibi is true:

— if bi is a receive, then αi also contains bi.
— if bi is a multi-receive, then αi also contains an element of bi that has not been

matched before. Formally, let ≤bi be an arbitrary but fixed total order of elements
of bi that satisfies that whenever x ≺mo y, then x <bi y. Then αi contains the lowest

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:16

element (with respect to ≤bi) of bi \
⋃
j<i αj . Existence of such an element follows

from (13) and (14).

Note that such bi always exists and is unique by (15) and (16). The following claims
hold true for the sequence θ and all i and j:

(a) For all a ∈ αi ∩ C̄ and b ∈ αj ∩ C̄, if clka < clk b, then i < j. Indeed, we can take the ai
and aj used to define θ, and observe that clka = clkai (since either a = ai, or a 6= ai
in which case saia is true and constraint (22) applies) and similarly clk b = clk bi .
Then the rest follows since if clkai < clkaj , then i < j.

(b) For all a ∈ αi ∩ C̄ and b ∈ αj ∩ x for some x ∈ R, if clka < clk−x , then i < j. Indeed,
as above we have clka = clkai ; we also take aj and note that by (23) we have
clk−x ≤ clkaj . Hence, clkai < clkaj and so i < j.

(c) For all a ∈ αi ∩ x for some x ∈ R and b ∈ αj ∩ C̄, if clk+
x < clk b, then i < j. Indeed, as

in (a) we have clk b = clkaj ; we also take ai and note that by (23) we have clkaj ≤ clk+
x .

Hence, clkai < clkaj and so i < j.
(d) For all a ∈ αi ∩ x for some x ∈ R and b ∈ αj ∩ y for some y ∈ R, if clk+

x < clk−y ,
then i < j. Indeed, as above, we consider that by (23) we have clkai ≤ clk+

x and
clk−y ≤ clkaj , and so i < j.

Moreover for all x ∈ C̄ we have that if mx is true, then x ∈
⋃K
i=1 αi, and for all x ∈ R

we have that if mx is true, then x ⊆
⋃K
i=1 αi; this follows by the construction of A and

by (15) and (16).
We define a trace from the sequence θ exactly as in Lemma 4.4. We stipulate that the

trace visits the states

qi = 〈Ii,Mi〉 = 〈 {y | ∃x �po y : x ∈
⋃

1≤`≤i

α`} ,
⋃

1≤`≤i

α` 〉

for 0 ≤ i ≤ K. The part of the trace from qi to qi+1 is defined to be

qi
{bi,1}−−−−→ 〈Ii ∪ {bi,1},Mi〉

{bi,2}−−−−→ . . .
{bi,ni

}
−−−−→ 〈Ii ∪ {bi,1, . . . bi,ni},Mi〉

αi+1−−−→ qi+1

where all except for the last transition are issue transitions, where {bi,1, . . . , bi,ni
} =

{y | ∃x �po y : x ∈ αi+1} \ {y | ∃x �po y : x ∈
⋃

1≤`≤i α`}, and where if bi,j ≺po bi,`, then
j < `.

We now argue that the sequence above is indeed a valid trace in S(P). First, q0 =
〈∅, ∅〉. Let i be the largest number such that the sequence from q0 up to qi is a valid
trace. Let j be the largest number such that the extension of this trace from qi up to
〈I,M〉 = 〈Ii ∪ {bi,1, . . . bi,j},Mi〉 is a valid trace. We analyse the possible values of j,
showing that each leads to a contradiction.

— Suppose 0 ≤ j < ni. First, note that bi,j+1 6∈ I ∪M , because bi,j+1 does not occur in
{y | ∃x �po y : x ∈

⋃
1≤`≤i α`}. We need to show that bi,j+1 ∈ Issuable(〈I,M〉). Let

a ∈ C.
If a ≺po bi,j+1, then by the definition of the sequence bi,1, . . . bi,ni

the element a has
been issued already.
If a ≺mo bi,j+1 and a is blocking, then by the definition of ≺mo we have a ≺mo c for
c ∈ αi+1 such that bi,j+1 ≺po c. We show that a ∈ αk for some k < i+ 1, proving that
a ∈M :
— (Case a, c ∈ C̄.) By applying (12) and (24), possibly multiple times, we establish

that clka < clk c. Further, for any x and y we have that if rx or mx is true and

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:17

y ≺mo x, then my is true; this follows from constraints (18) and (20). Hence, ma is
true, and so a must be contained in some αk, and by a. above we have k < i+ 1.

— (Case a ∈ C̄ and c ∈ y for some y ∈ R.) Similarly to the above we establish that
clka < clk−y , and that because ry is true, ma must also hold true. Then by b. above
we have that a is contained in some αk for k < i+ 1.

— (Case a ∈ y for some y ∈ R and bi,j+1 ∈ C̄.) Similarly to the above we establish
that clk+

y < clka, and that because ry is true, ma must also hold true. Then by
c. above we have that a is contained in some αk for k < i+ 1.

— (Case a ∈ y for some y ∈ R and bi,j+1 ∈ z for some z ∈ R for y 6= z.) Here we
show that clk+

y < clk−z , and then use d. above to prove that a is contained in some
αk for k < i+ 1.

— (Case a, b ∈ y for some y ∈ R.) By the definition of the sequence θ and by the
definition of the order ≤y on the elements of y, we have that there is k < i+ 1 with
a ∈ αk.

— Suppose j = ni. We have argued above that for every element b ∈ αi+1 and every
a ≺mo b we have a ∈ M . Also, b ∈ I \M , and so αi+1 is ready in 〈I,M〉. Finally,
we defined αi+1 to be either a singleton set containing a wait, or a set containing
compatible send and receive, hence, αi+1 ∈ Matchable(〈I,M〉).
Finally, we argue that the trace is deadlocking. By (15), (16), (19) and the construction

of the sequence θ we have that MK (C. We show that from qK = 〈IK ,MK〉 it is not
possible to make a match transition, even after possibly making a number of issue
transitions. This proves that there is a deadlocking trace. Suppose that it is possible
to make a match transition, and let us fix a suffix qK

{b1}−−−→ q̂1
{b2}−−−→ q̂2 . . .

{bn}−−−→ q̂n
α−→ q̄

where all transitions except for the last one are issue transitions. Note that because
q̂n = 〈IK ∪ {b1, . . . , bn},MK〉, for the transition under α to exist it must be the case that
for any b ∈ α and any a ≺mo b we have a ∈MK . But then by (18) all b ∈ α satisfy that
rb is true, and by (17) we get that there is b ∈ α for which mb is true, and so b ∈ MK ,
which contradicts that the match transition under α can be taken in q̂n.

5. IMPLEMENTATION AND EXPERIMENTAL RESULTS
5.1. Experimental Setup
The MOPPER deadlock discovery tool takes as input a single-path MPI program and
outputs the result of the deadlock analysis. Currently, the single-path property is not
checked by MOPPER but is assumed to hold.3 MOPPER supports the blocking and
nonblocking point-to-point communication calls and the barrier call from the set of
collective communication constructs provided by the MPI standard.

MOPPER first compiles and executes the input program using ISP (In-Situ Partial
order), presented by Vakkalanka [2010]. The ISP tool outputs a canonical trace of
the input program, along with the matches-before partial order �mo. MOPPER then
computes the M+ over-approximation as follows. The initial M+ is obtained by taking
the union of all sets whose elements are type-compatible (i.e., singleton sets containing
a wait call, sets of barrier calls containing individual calls from each process, and sets
containing Si,−(j) together with Rj,−(i/∗)), and then refining the set by removing the
sets which violate some basic rules implied by �mo. Formally, the M+ we use is the

3Note that it is possible to implement an automated heuristic check (at compile time) whether a program is
single-path or not. One can begin by performing a context-insensitive analysis that first identifies the control
locations where nondeterministic wildcard receive calls are issued. Then in a flow-sensitive manner, one can
analyze whether the received data from the discovered set of control locations flow in to the predicate of a
branch that contains a communication call in its body. We leave the development of this aspect of the tool for
future work.

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:18

largest set satisfying

M+ = {{a, b} | a = Si,−(j), b = Rj,−(i/∗),
∀a′ ≺mo a ∃ b′ 6�mo b : {a′, b′} ∈M+,

∀b′ ≺mo b ∃ a′ 6�mo a : {a′, b′} ∈M+}
∪ {{a} | a = Wi,l(hj)}
∪ {{a1, . . . , aN} | ∀i ∈ [1, N], ai = Bi,−} .

Due to these conservative constraints, we easily get M+ ⊇M. The definition of the set
M+
R using M+ is straightforward.

Example 5.1. To reinforce the intuition behind the set M+, consider the example
given in the following diagram:

P1 P2 P3

b1 : bR1,1(∗) a1 : bS 2,1(1) a2 : bS 3,1(1)
b2 : bR1,2(∗) a3 : bR3,2(1)
b3 : bS 1,3(3) a4 : bS 3,3(1)
b4 : bR1,4(∗)

Following the definition of M+, we compute:

M+ = {{a1, b1}, {a1, b2}, {a1, b4}, {a2, b1}, {a2, b2}, {a3, b3}, {a4, b4}}
Notice, however, some matches are infeasible. Under zero-buffering, there does not exist
a valid trace of the program where {a1, b4} is feasible. This discussion illustrates M
might not be equal to M+.

The partial order �mo and the set M+ (resp. M+
R) is then used by MOPPER to con-

struct the propositional formula as explained in the previous section. This propositional
formula is passed to the SAT solver, and when the computation finishes, the result is
presented to the user, possibly with a deadlocking trace. MOPPER produces not only
a SAT model (in case there exists a deadlocking schedule) but also provides an option
to the user to re-run the program under the ISP scheduler where the real deadlocking
trace is produced by taking cues from the SAT model. Figure 9 illustrates the output of
MOPPER on the example code from Figure 2.

Our experiments were performed on a 64-bit, octa-core, 3 GHz Xeon machine with
48 GB of memory, running Linux kernel version 3.19. A time-out of one hour is re-
served for ISP, while for MOPPER a time-out of 20 minutes is reserved. MOPPER
uses ISP version 0.2.0 [Vakkalanka 2010] to generate the trace and MiniSat ver-
sion 2.2.0 [Eén and Sörensson 2003] to solve the propositional formula. We used
the Totalizer encoding [Bailleux and Boufkhad 2003] to encode the cardinality con-
straints that appear in the formulas in Figure 8. All our benchmarks are C MPI
programs and the sources of the benchmarks and the MOPPER tool can be found
at http://www.github.com/subodhvsharma/benchmarks.git and http://www.github.com/
subodhvsharma/mopper-spo.git, respectively.

5.2. Benchmarks
The benchmarks Diffusion2d and Integrate are a part of the FEVS benchmark suite
by Siegel and Zirkel [2011a]; these benchmarks exhibit a high degree of nondeterminism,
as indicated by their value of ρ (see below). The Diffusion2d benchmark solves the
two-dimensional diffusion equation. In Diffusion2d, each node communicates its local
computation results with its neighbouring nodes which are laid out in a grid fashion.
The Integrate benchmark estimates the integral of a sine or a cosine function in a given

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:19

********* SAT VALUATIONS ************
Number of Clauses: 215
Number of Variables: 78
Constraint Generation Time: 0.000213sec
Solving Time: 0.000128sec
Mem (MB): 4.78516
Formula is SAT -- DEADLOCK DETECTED
M_00:1
I_00:1
M_01:0
I_01:1
M_10:0
I_10:1
M_20:1
I_20:1
S_1000:0
S_2001:0
S_2000:1
============= Running the Program with SAT model =============
Transition list for 0
0 o=8 i=0 rank=0 Recv dl1.c:19 src=-1 rtag=1{[0, 1]} {} Matched [2,0]
1 o=13 i=1 rank=0 Recv dl1.c:20 src=2 rtag=1{} {}

Transition list for 1
0 o=9 i=0 rank=1 Send dl1.c:23 dest=0 stag=1{[1, 1]} {}
1 o=11 i=1 rank=1 Finalize dl1.c:29{} {}
No resource leaks detected, 2 MPI calls trapped.

Transition list for 2
0 o=10 i=0 rank=2 Send dl1.c:26 dest=0 stag=1{[2, 1]} {} Matched [0,0]
1 o=12 i=1 rank=2 Finalize dl1.c:29{} {}
No resource leaks detected, 2 MPI calls trapped.

No matching MPI call found!
Detected a DEADLOCK in interleaving 2

Fig. 9. Output of MOPPER on a deadlocking program from Figure 2

range. The integration tasks are dynamically allotted to worker nodes by a master node.
Due to this dynamic load balancing by the master node, Integrate is not a single-path
MPI program. In order to make Integrate a single path benchmark, we modified the
source to implement static load balancing. In this single-path variant of the Integrate
benchmark, the schedule space grows as n!/n where n is the number of processes.

The benchmarks Floyd and Gauss Elimination are from Xue et al. [2009] and both
are single-path MPI programs. Floyd implements the all-pairs shortest path algorithm
and employs a pipelined communication pattern where each process communicates
with the process immediately next in the ranking.

We have a set of ten synthetic benchmarks with various deadlocking patterns that are
not discovered by the MPI runtime even after repeated runs. Among them, we include
only the DTG benchmark (dependence transition group, from Vakkalanka [2010]). The
benchmark has a seemingly unrelated pair of matches at the start state that do not
commute. Thus, selecting one match-pair over the other leads to a deadlock. A run of
ISP with optimization fails to discover the deadlock. However, when the optimization is
turned off, ISP discovers the deadlock after three runs.

A pattern similar to the one in DTG exists in the Heat-errors benchmark [Mueller
et al. 2011]. This benchmark implements the solution of the heat conduction equation.
ISP discovers the deadlock (when this benchmark is run on eight processes) in just over

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:20

two hours after exploring 5021 interleavings. The same deadlock is discovered in under
a second by MOPPER.

5.3. Results
5.3.1. Comparison with ISP. We first compare the performance of MOPPER with the

dynamic verifier that is integrated in ISP. The results of the experiments are tabulated
in Table I. The table presents the results under different buffering assumptions only
for those benchmarks where buffering had an impact.

All the benchmarks have been run five times and in the tables the average time
taken across all these runs have been reported. The time values reported for MOPPER
include the time to (i) generate the execution, (ii) generate the constraints and (iii) solve
the constraints. Comparison of the execution time of both tools is meaningful only
when the benchmarks are single-path. For the benchmarks where this is not the case
MOPPER only explores a subset of the scenarios that ISP explores. To estimate the
degree of match nondeterminism in the collected program trace, we introduce a new
metric ρ = |M+|/mcount , where mcount is the number of send and receive matches in
the trace. Benchmarks with a high value of ρ have a large set of potential matches. Since
the metric relies on potential matches, ρ could be greater than 1 even for a completely
deterministic benchmark. From the results it is evident that our SAT encoding-based
solution outperforms the explicit-state dynamic model checking solution.

5.3.2. Optimized Encoding for Multi-Receives. Next, we compare MOPPER with the op-
timized encoding for multi-receives presented in Section 4.3. We refer to the novel
optimized encoding as MOPPER-Opt. We benchmarked the optimized encoding on those
benchmarks where the nondeterminism factor was very high. Incidentally, all these
benchmarks also had a high presence of multi-receives. Table II presents a performance
analysis of MOPPER-Opt against MOPPER. Note that the optimized encoding produces
a dramatic reduction in the analysis time in comparison to the timing results from
the original MOPPER encoding. This can be attributed to significant reduction in the
size of the formula that gets generated in the optimized encoding which can be seen
in Table II. On benchmarks with a lower degree of nondeterminism, such as DTG and
Gauss Elimination, the performance of both the encodings is similar. Our experience
shows that the choice of the cardinality encoding has impact on solving times, with the
Totalizer encoding giving the best results.

5.3.3. Comparison with CIVL. We compared MOPPER with a bounded model checker
that comes with the CIVL framework [Zirkel et al. 2014; Siegel et al. 2015], version 1.7.

CIVL failed to compile Floyd, Integrate and Diffusion2d. It seems that CIVL does
not model many intrinsic functions, which results in compilation failure. For Floyd and
Diffusion2d, removing file-related functions such as printf, fprintf makes the compilation
succeed. However, CIVL crashes with a NullPointerException on Diffusion2d in a later
phase. For Integrate, we had to add #define statements to the primary source file to
set values for some constants that are defined in an included header file. This results in
a successful compilation of the benchmark.

CIVL crashed with NullPointerException on the Heat benchmarks. For the synthe-
sized benchmarks as well as the Integrate benchmarks, we observed that MOPPER
was faster by an order of magnitude, as shown in Table III. However, this would not
be an objective comparision owing to the way in which CIVL models buffer size. CIVL
assumes complete non-determinism in the buffer size; in addition to this, it also con-
siders the scenario in which the buffer size changes in a non-deterministic fashion.
Clearly, this makes the set of behaviours explored by CIVL larger than those explored
by MOPPER. Furthermore, the analysis performed by CIVL is more static in nature as
compared to trace-based analysis of MOPPER. It is worth noting that due to this, CIVL

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:21

Table I. Experimental Results

MOPPER ISP
B’mark Calls Procs ρ B Dl a Vars Clauses time Runs time

s DTG† 16 5 1.33 0 4 270 755 0.04 3 0.17
∞ 256 708 0.06 3 0.29

s Gauss Elim
92 8 1.86 0 3.1K 9.6K 0.33 1 1.11

188 16 1.93 0 7.1K 22.2K 1.54 1 2.40
380 32 1.97 0 16K 50K 3.07 1 4.00

s Heat
152 8 1.8 0 4 9.4K 28.8K 1.5 >2.5K TO
312 16 1.84 0 4 20.9K 64.6K 4.34 >2.5K TO
632 32 1.86 0 4 47.1K 145.6K 6.98 >2.5K TO

s Floyd

120 8 7 ∞ 16.3K 60.3K 3.32 >20K TO

256 16 7.53 0 41K 152.4K 20.83 >20K TO
∞ 40.5K 150.9K 31.47 >20K TO

528 32 7.8 0 92.4K 344.4K 86.22 >20K TO
∞ 91.3K 340.9K 155.54 >20K TO

s Diffusion2d 52 4 2.82 ∞ 3.8K 13.3K 0.39 90 55.76
108 8 5.7 ∞ 19K 71.8K TO >10.5K TO

m Integrate

28 4 3.0 ⊗ 386 1163 0.07 6 1.08
36 8 4.0 ⊗ 2K 7.3K 0.36 5040 216.72
46 10 5.0 ⊗ 3.8K 14.2K 17.34 >13K TO
76 16 7.0 ⊗ 13.8K 53K TO >13K TO

Legend: a Deadlock present † ISP misses the deadlock under optimized run TO Exceeds 20 minute time
limit s single-path ⊗ Buffering model irrelevant m modified to be single-path

Table II. Results for MOPPER-Opt encoding

MOPPER MOPPER-Opt
B’mark Calls Procs B Vars Cl time (in sec) Vars Cl time (in sec)

DTG 16 5 0 270 755 0.04 252 695 0.02
∞ 256 708 0.06 238 648 0.06

Gauss Elim
92 8 0 3.1K 9.6K 0.33 3.4K 10.5K 0.32

188 16 0 7.1K 22.2K 1.54 8K 24.9K 1.64
380 32 0 16K 50K 3.07 18.3K 57.1K 2.87

a Heat
312 16 0 20.9K 64.6K 4.34 19.3K 58K 1.76
632 32 0 47.1K 145.6K 6.98 42.8K 128.4K 3.63
1272 64 0 106.2K 331.3K 14.70 93.5K 280.3K 6.89

Floyd

120 8 ∞ 16.3K 60.3K 3.32 9.6K 30.7K 0.61

256 16 0 41K 152.4K 20.83 19.7K 62.8K 1.07
∞ 40.5K 150.9K 31.47 19.3K 61.3K 1.68

528 32 0 92.4K 344.4K 86.22 41.2K 131.2K 2.35
∞ 91.3K 340.9K 155.54 40.1K 127.7K 2.24

1072 64 0 199.9K 745.7K 856.79 87.9K 279.8K 4.04
∞ 197.6K 737.9K 461.65 85.5K 271.9K 4.19

Diffusion2d
52 4 ∞ 3.8K 13.3K 0.39 2.5K 7.6K 0.35

108 8 ∞ 19K 71.8K TO 5.1K 15.6K 0.72
220 16 ∞ 119.7K 471.4K TO 10.7K 32.7K 2.02

Integrate 46 10 ∞ 3.8K 14.2K 17.34 1.1K 3.2K 0.37
76 16 ∞ 13.8K 53K TO 2.1K 6.3K 1.18

Legend: a Deadlock present TO Exceeds time limit of 20 minutes

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:22

Table III. CIVL vs. Simgrid vs. MOPPER-Opt vs. MOPPER

CIVL Simgrid MOPPER-Opt MOPPER
B’mark Calls Procs B T (in sec) T (in sec) T (in sec) T (in sec)

a Heat
312 16 0 NE 1.44 1.76 4.34
632 32 0 NE 1.74 3.63 6.98
1272 64 0 NE 2.31 6.89 14.70

Floyd 120 8 ∞ TO TO 0.61 3.32
Diffusion2d 220 16 ∞ NE b 1.32 2.02 TO

Integrate
16 4 ∞ b 4.62 1.08 0.06 0.07
26 6 ∞ b 5.76 1.12 0.06 0.09
36 8 ∞ b 7.19 1.21 0.28 0.36
76 16 ∞ b 14.37 1.23 1.18 TO

Legend: a Deadlock present b Wrong result TO Exceeds time limit of 20 minutes NE Null-
PointerException

reports a potential deadlock in the Gaussian Elimination and Integrate benchmarks
whereas MOPPER does not. For both of these benchmarks, CIVL reports MAYBE for
the certainty parameter, indicating that the tool is unable to establish the correctness
of the deadlocks. The output generated by CIVL is unreadable and insufficient for us
to determine whether the cause of deadlock given in the output is spurious. However,
through manual inspection and automated inspection of benchmarks using MOPPER,
ISP and Simgrid, we conclude that the deadlocks reported by CIVL must be false
positives.

5.3.4. Comparison with TASS. To compare MOPPER with the bounded model checker
TASS by Siegel and Zirkel [2011b], we used the 64-bit Linux binary of TASS version 1.1.
Since TASS accepts only a limited subset of C, our experimentation with TASS is
restricted to only few benchmarks, namely Integrate and the synthetic benchmarks.
With these few benchmarks, the scalability of TASS cannot be evaluated in an objective
manner. We observed, however, that the deadlock discovery of TASS on our benchmarks
was particularly slow: the analysis of Integrate with TASS timed out when run for
ten processes (TASS is configured to time-out after 20 minutes). On the synthetic
benchmarks, TASS was one order of magnitude slower than MOPPER.

5.3.5. Comparison with Simgrid. Simgrid, by Merz et al. [2011], is a stateless explicit-
state model checker that is integrated into a simulation framework. It is closest to
ISP in terms of operationality and methodology. For the evaluation we used real (“wall
clock”) time for both Simgrid and MOPPER-Opt. On Diffusion2d, Simgrid produces a
wrong diagnosis, while on benchmark Floyd, it runs out of time. From our personal
conversation with the authors, it became apparent that Simgrid does not analyze
MPI_Send calls in MPI applications with system buffering. Diffusion2d is known to
deadlock in the very first run with zero-buffering. For other benchmarks, such as
Integrate, our encoding resulted in significantly smaller analysis time. The results of
the comparison of Simgrid with MOPPER-Opt and MOPPER are given in Table III.
Note that on the Heat benchmarks, Simgrid performs consistently better than MOPPER
but performs similarly to MOPPER-Opt.

Our results show that the search for deadlocks using SAT and our partial-order
encoding is efficient compared to existing state-of-the-art dynamic and symbolic verifiers.
There is further room for improvement. For example, as operations before a barrier are
never matched with operations after the barrier, we can further refine M+. This could
result in a smaller search space for the SAT solver, thereby reducing the constraint
solving time.

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:23

6. RELATED WORK
Deadlock discovery is a central problem in the CCS community. As an instance,
DELFIN+ [Gradara et al. 2006] is a model checker for CCS that uses the A∗ algo-
rithm as a heuristic to find errors early in the search. Process algebra systems, like CCS
and CSP, appear to be a natural fit to analyse MPI programs. However, to the best of
our knowledge, no research exists that addresses the problem of automatically building
CSP/CCS models from MPI programs and analysing them using CSP/CCS tools. Tools
such as Pilot [Carter et al. 2010] support the implementation of CSP models using MPI.

Petri nets are another popular formalism for modelling and analysing distributed
systems. Cheng et al. [1995] presented a technique to discover deadlocks in a class of
Petri nets called 1-safe Petri nets and proved the problem to be NP-complete. Neverthe-
less, we are not aware of any polynomial-time reduction between this problem and the
problem we study.

Chen et al. [2008] and Wang et al. [2009] apply a predictive trace analysis methodology
to multithreaded C/Java programs. Wang et al. [2009] construct a propositional encoding
of constraints over partial orders and pass it to a SAT solver. They utilize the source
code and an execution trace to discover a causal model of the system that is more relaxed
than the causal order computed in some of the prior work in that area. This enables
them to reason about a wider set of thread interleavings and find races and assertion
violations which other work may miss. The symbolic causal order together with a bound
on the number of context switches is used to improve the scalability of the algorithm.
In our work, the concept of context switch is irrelevant. The per-process matches-before
relation suffices to capture all match possibilities precisely, and consequently, there
are neither false positives nor false negatives. The tool presented by Alglave et al.
[2013] addresses shared-variable concurrent programs, and is implemented on top of
the CBMC Bounded Model Checker by Clarke et al. [2004].

MCAPI (Multicore Communications API) [Holt et al. 2009] is a lightweight message
passing library for heterogeneous multicore platforms. It provides support for a subset
of the calls found in MPI. For instance, MCAPI does not have deterministic receives or
collective operations. Thus, the class of deadlocks found in MCAPI is a subset of the class
of deadlocks in MPI. Deniz et al. [2012] provide a trace analysis algorithm that discovers
deadlocks and violations of temporal assertions in MCAPI. The discovery of deadlocks is
based on the construction of AND Wait-for graphs and is imprecise. The work in [Huang
et al. 2013; Elwakil and Yang 2010] discovers assertion violations in MCAPI programs.
While both present an order-based encoding, the work by Elwakil and Yang [2010] does
not exploit the potential matches relation, and thus yields a much slower encoding, as
observed by Huang et al. [2013]. Huang et al. [2013] furthermore present an order-based
SMT encoding using the potential matches relation. The encoding is designed to reason
about violations of assertions on data, and cannot express the existence of deadlocks.
The paper furthermore shows that the problem of discovering assertion violations on a
trace is NP-complete. Due to the inherent difference of the problems studied, our proof
of NP-completeness is significantly more involved than the one of Huang et al. [2013].
In particular, for a 3-CNF formula with n clauses, their work uses n assertions, where
each assertion itself is a disjunction of propositions (corresponding to the literals in a
clause of the 3-CNF formula). In our case, the satisfiability of all clauses needs to be
expressed by a possibility to form a single match.

TASS [Siegel and Zirkel 2011b] is a bounded model checker that uses symbolic
execution to verify safety properties in MPI programs that are implemented using a
strict subset of C. It is predominantly useful in establishing the equivalence of sequential
and parallel versions of a numerically-insensitive scientific computing program. TASS
may report false alarms and the authors indicate that the deadlock discovery strategy

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:24

does not scale when nondeterministic wildcard receives are used [Siegel and Zirkel
2011b].

CIVL is a tool that can analyse C programs that use a variety of communication
protocols, including MPI. For verification it uses symbolic execution. Siegel et al. [2015]
state that the main strength of CIVL is in the variety of dialects it supports, and that it
is outperformed by TASS in their experiments.

Eslamimehr and Palsberg [2014] present a path-based concolic execution engine for
discovering deadlocks in Java programs. Key to the technique is the permutation of
instructions on the path that is analysed (i.e., the search considers an alternative inter-
leaving). Our SAT-based encoding could be used to simultaneously check an exponential
number of the possible permutations.

Fu et al. [2014] (also Fu et al. [2015]) combine an MPI scheduler with a path-based
symbolic execution engine, which is based on Cloud9 [Bucur et al. 2011], which in turn
is based on KLEE [Cadar et al. 2008]. The symbolic execution engine deals with data
nondeterminism, whereas the scheduler explores the communication nondeterminism,
in the style of ISP. Nonblocking MPI operations, which yield a large degree of nonde-
terminism, are not considered. They report experimental results on benchmarks with
around six MPI calls on average. The usage of ISP is sufficient to find all deadlocks in
those benchmarks that are input independent. Their implementation was not available
for comparison on our benchmarks.

López et al. [2015] use a type-based approach for annotating C programs that use
the MPI API and supports a broad variety of communication primitives. However, non-
blocking operations and wildcard receives are not considered. The type-based approach
avoids the analysis of the state space of the MPI program, and thus, does not suffer from
the state-space explosion problem. Similarly, Santos et al. [2015] begin with an abstract
specification of a protocol that governs the communication between the MPI processes.
The verification of the protocols relies on manual annotations. Neither nonblocking
calls nor wildcard receives are considered.

Huang and Mercer [2015] present a necessary condition for deadlocks for the case of
the zero-buffering model. Zero-buffer encoding discovers a subset of deadlocks discov-
ered by the MOPPER (or MOPPER-Opt) encoding. They report that the performance of
their encoding is comparable to ours (for the case of zero-buffer incompatibility) with
the exception of the Diffusion2D benchmark, where MOPPER times out with 8 and 16
processes. MOPPER-Opt, on the other hand, tackles Diffusion2D scalably: for 8 and
16 processes under infinite buffering the analysis requires only 0.02 and 0.04 seconds,
respectively. Since their tool for the zero-buffer encoding is not publicly available, a
proper comparison with MOPPER-Opt was not feasible. However, the timing results
reported by Huang and Mercer [2015] for Diffusion2D on 8 and 16 processes were
slower than timing results observed with MOPPER-Opt.

Böhm et al. [2016] have recently proposed an explicit-state model checking approach
to detect deadlocks in MPI programs. They rely on state pruning by means of partial
order reduction (POR) [Valmari 1989; Peled 1993]. Their tool supports buffering modes
beyond zero and infinite buffering. It remains to be analyzed how this compares to a
SAT-based technique, and whether POR could be used as a means to reduce the size
of M+.

7. CONCLUSION
We have investigated the problem of deadlock discovery for a class of MPI programs
with no control-flow nondeterminism. We have shown that finding a deadlock in such
programs is NP-complete. We have further devised SAT-based encodings that can be
successfully used to find deadlocks in real-world programs. We have implemented the
encodings as part of a new tool, called MOPPER, and have provided an evaluation

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:25

on benchmarks of various sizes. Our experiments show that the tool outperforms the
state-of-the-art model checkers in the area.

There are several directions in which our tool can be improved. One obvious direction
is to handle larger subset of the MPI language. Collective communication calls (with non-
synchronizing behaviors) along with a complex interaction of processes in the presence
of groups, communicators, and various virtual topologies pose an interesting challenge
in extending MOPPER’s SAT encoding. Calls such as wait-some and wait-any introduce
another layer of nondeterminism in the program which may result in much larger state-
spaces. Encoding the semantics of such calls in the SAT formulae is straightforward.
With version 3.0, the MPI standard has added support for nonblocking collective calls
and channel-based communication. This will requires nontrivial changes to our SAT
encoding rules, since the semantics of primitives such as nonblocking collectives will
be vastly different from the semantics of collective calls in previous versions of the
standard. Another interesting direction is making the SAT encoding more efficient; this
can be achieved by identifying and breaking symmetries in the SAT formulae. It is well
known that symmetry breaking leads to significant reduction in SAT solving times.

While our approach can still be used as a per-path-oracle in a dynamic verifier or
model checker that explores the relevant control-flow paths for programs that are
not single-path, another important direction will be to make the MOPPER analysis
sensitive to the data communicated among processes. This will extend MOPPER to
handle programs that do not have the single-path property, such as load-balancers, and
enables the verification of a much larger class of real-world MPI programs. Finally, we
believe that the extended encoding for multipath MPI programs will result in wider
applicability of our techniques to other popular programming languages that provide
message passing support, such as Erlang or Scala. We plan to investigate these in our
future work.

Acknowledgements. The authors were in part supported by EPSRC H017585/1,
J012564/1 and M023656/1, the EU FP7 STREP PINCETTE, ERC CPROVER 280053
and the H2020 FET OPEN 712689 SC2. G. Narayanaswamy is a Commonwealth Scholar,
funded by the UK government. V. Forejt is also affiliated with Masaryk University,
Czech Republic.

REFERENCES
Jade Alglave, Daniel Kroening, and Michael Tautschnig. 2013. Partial Orders for Efficient Bounded Model

Checking of Concurrent Software. In Computer Aided Verification (CAV) (LNCS), Vol. 8044. Springer,
141–157. DOI:http://dx.doi.org/10.1007/978-3-642-39799-8 9

Olivier Bailleux and Yacine Boufkhad. 2003. Efficient CNF Encoding of Boolean Cardinality Constraints.
In Principles and Practice of Constraint Programming (CP) (LNCS), Vol. 2833. Springer, 108–122.
DOI:http://dx.doi.org/10.1007/978-3-540-45193-8 8

Stanislav Böhm, Ondrej Meca, and Petr Jancar. 2016. State-Space Reduction of Non-deterministically
Synchronizing Systems Applicable to Deadlock Detection in MPI. In Formal Methods (FM) (LNCS), Vol.
9995. 102–118. DOI:http://dx.doi.org/10.1007/978-3-319-48989-6 7

Stefan Bucur, Vlad Ureche, Cristian Zamfir, and George Candea. 2011. Parallel Symbolic Execu-
tion for Automated Real-world Software Testing. In Computer Systems (EuroSys). ACM, 183–198.
DOI:http://dx.doi.org/10.1145/1966445.1966463

Cristian Cadar, Daniel Dunbar, and Dawson R. Engler. 2008. KLEE: Unassisted and Automatic Generation of
High-Coverage Tests for Complex Systems Programs. In Operating Systems Design and Implementation
(OSDI). USENIX Association, 209–224.

John D. Carter, William B. Gardner, and Gary Grewal. 2010. The Pilot Library for Novice MPI
Programmers. In Principles and Practice of Parallel Programming (PPoPP). ACM, 351–352.
DOI:http://dx.doi.org/10.1145/1693453.1693509

Feng Chen, Traian Florin Serbanuta, and Grigore Rosu. 2008. jPredictor: A Predictive Runtime Anal-
ysis Tool for Java. In International Conference on Software Engineering (ICSE). ACM, 221–230.
DOI:http://dx.doi.org/10.1145/1368088.1368119

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:26

Allan Cheng, Javier Esparza, and Jens Palsberg. 1995. Complexity Results for 1-Safe Nets. Theor. Comput.
Sci. 147, 1&2 (1995), 117–136. DOI:http://dx.doi.org/10.1016/0304-3975(94)00231-7

Edmund Clarke, Daniel Kroening, and Flavio Lerda. 2004. A Tool for Checking ANSI-C Programs. In Tools
and Algorithms for the Construction and Analysis of Systems (TACAS) (LNCS), Vol. 2988. Springer,
168–176. DOI:http://dx.doi.org/10.1007/978-3-540-24730-2 15

Etem Deniz, Alper Sen, and Jim Holt. 2012. Verification and Coverage of Message Pass-
ing Multicore Applications. ACM Trans. Design Autom. Electr. Syst. 17, 3 (2012), 23.
DOI:http://dx.doi.org/10.1145/2209291.2209296

Niklas Eén and Niklas Sörensson. 2003. An Extensible SAT-solver. In Theory and Applications of Satisfiability
Testing (SAT) (LNCS), Vol. 2919. Springer, 502–518. DOI:http://dx.doi.org/10.1007/978-3-540-24605-3 37

Mohamed Elwakil and Zijiang Yang. 2010. Debugging Support Tool for MCAPI Applications. In
Parallel and Distributed Systems: Testing, Analysis, and Debugging (PADTAD). ACM, 20–25.
DOI:http://dx.doi.org/10.1145/1866210.1866212

Mahdi Eslamimehr and Jens Palsberg. 2014. Sherlock: Scalable Deadlock Detection for
Concurrent Programs. In Foundations of Software Engineering (FSE). ACM, 353–365.
DOI:http://dx.doi.org/10.1145/2635868.2635918

Vojtech Forejt, Daniel Kroening, Ganesh Narayanaswamy, and Subodh Sharma. 2014. Precise Predictive
Analysis for Discovering Communication Deadlocks in MPI Programs. In Formal Methods (FM) (LNCS),
Vol. 8442. Springer, 263–278. DOI:http://dx.doi.org/10.1007/978-3-319-06410-9 19

Alan M. Frisch and Paul A. Giannaros. 2010. SAT Encodings of the At-Most-k Constraint: Some Old, Some
New, Some Fast, Some Slow. In Constraint Modelling and Reformulation (ModRef).

Xianjin Fu, Zhenbang Chen, Chun Huang, Wei Dong, and Ji Wang. 2014. Synchronization Error Detection of
MPI Programs by Symbolic Execution. In Asia-Pacific Software Engineering Conference (APSEC). IEEE,
127–134. DOI:http://dx.doi.org/10.1109/APSEC.2014.28

Xianjin Fu, Zhenbang Chen, Yufeng Zhang, Chun Huang, Wei Dong, and Ji Wang. 2015. MPISE: Sym-
bolic Execution of MPI Programs. In High Assurance Systems Engineering (HASE). IEEE, 181–188.
DOI:http://dx.doi.org/10.1109/HASE.2015.35

Sara Gradara, Antonella Santone, and Maria Luisa Villani. 2006. DELFIN+: An Efficient Dead-
lock Detection Tool for CCS Processes. J. Comput. Syst. Sci. 72, 8 (2006), 1397–1412.
DOI:http://dx.doi.org/10.1016/j.jcss.2006.03.003

Waqar Haque. 2006. Concurrent Deadlock Detection in Parallel Programs. Intl. J. in Computer Applications
28, 1 (2006), 19–25.

Tobias Hilbrich, Joachim Protze, Martin Schulz, Bronis R. de Supinski, and Matthias S. Müller. 2012. MPI
Runtime Error Detection with MUST: Advances in Deadlock Detection. In High Performance Computing,
Networking, Storage and Analysis (SC). IEEE/ACM. DOI:http://dx.doi.org/10.3233/SPR-130368

Jim Holt, Anant Agarwal, Sven Brehmer, Max Domeika, Patrick Griffin, and Frank Schirrmeis-
ter. 2009. Software Standards for the Multicore Era. IEEE Micro 29, 3 (2009), 40–51.
DOI:http://dx.doi.org/10.1109/MM.2009.48

Yu Huang and Eric Mercer. 2015. Detecting MPI Zero Buffer Incompatibility by SMT
Encoding. In NASA Formal Methods (NFM) (LNCS), Vol. 9058. Springer, 219–233.
DOI:http://dx.doi.org/10.1007/978-3-319-17524-9 16

Yu Huang, Eric Mercer, and Jay McCarthy. 2013. Proving MCAPI executions are correct using SMT. In
Automated Software Engineering (ASE). IEEE, 26–36. DOI:http://dx.doi.org/10.1109/ASE.2013.6693063

Bettina Krammer, Katrin Bidmon, Matthias S. Müller, and Michael M. Resch. 2003. MARMOT: An
MPI Analysis and Checking Tool. In Parallel Computing: Software Technology, Algorithms, Archi-
tectures and Applications (PARCO) (2005-02-07) (Advances in Parallel Computing). Elsevier, 493–500.
DOI:http://dx.doi.org/10.1016/S0927-5452(04)80063-7

Alan Leung, Manish Gupta, Yuvraj Agarwal, Rajesh Gupta, Ranjit Jhala, and Sorin
Lerner. 2012. Verifying GPU Kernels by Test Amplification. In PLDI. ACM, 383–394.
DOI:http://dx.doi.org/10.1145/2254064.2254110

Hugo A. López, Eduardo R. B. Marques, Francisco Martins, Nicholas Ng, César Santos, Vasco Thudichum Vas-
concelos, and Nobuko Yoshida. 2015. Protocol-Based Verification of Message-Passing Parallel Programs.
In OOPSLA. ACM, 280–298. DOI:http://dx.doi.org/10.1145/2814270.2814302

Glenn R. Luecke, Yan Zou, James Coyle, Jim Hoekstra, and Marina Kraeva. 2002. Deadlock detection
in MPI programs. Concurrency and Computation: Practice and Experience 14, 11 (2002), 911–932.
DOI:http://dx.doi.org/10.1002/cpe.701

Stephan Merz, Martin Quinson, and Cristian Rosa. 2011. SimGrid MC: Verification Support for
a Multi-API Simulation Platform. In FMOODS/FORTE (LNCS), Vol. 6722. Springer, 274–288.
DOI:http://dx.doi.org/10.1007/978-3-642-21461-5 18

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:27

Message Passing Interface Forum. 2009. MPI: A Message-Passing Interface Standard. (2009). http://www.
mpi-forum.org/docs/mpi-2.2.

Matthias S. Mueller, Ganesh Gopalakrishnan, Bronis R. de Supinski, David Lecomber, and Tobias Hilbrich.
2011. Dealing with MPI Bugs at Scale: Best Practices, Automatic Detection, Debugging, and Formal
Verification. (2011). http://rcswww.zih.tu-dresden.de/∼hilbrich/sc11/.

N. Natarajan. 1984. A Distributed Algorithm for Detecting Communication Deadlocks. In Foundations of
Software Technology and Theoretical Computer Science (FSTTCS) (LNCS), Vol. 181. Springer, 119–135.
DOI:http://dx.doi.org/10.1007/3-540-13883-8 68

Doron A. Peled. 1993. All from One, One for All: on Model Checking Using Representatives. In Computer
Aided Verification, 5th International Conference, CAV ’93, Elounda, Greece, June 28 - July 1, 1993,
Proceedings. 409–423. DOI:http://dx.doi.org/10.1007/3-540-56922-7 34

César Santos, Francisco Martins, and Vasco Thudichum Vasconcelos. 2015. Deductive Verification of Parallel
Programs Using Why3. In ICE. DOI:http://dx.doi.org/10.4204/EPTCS.189.11

Subodh Sharma, Ganesh Gopalakrishnan, Eric Mercer, and Jim Holt. 2009. MCC: A Runtime Verification
Tool for MCAPI User Applications. In Formal Methods in Computer-Aided Design (FMCAD). IEEE, 41–44.
DOI:http://dx.doi.org/10.1109/FMCAD.2009.5351145

Stephen F. Siegel. 2007. Model Checking Nonblocking MPI Programs. In Verification, Model
Checking, and Abstract Interpretation (VMCAI) (LNCS), Vol. 4349. Springer, 44–58.
DOI:http://dx.doi.org/10.1007/978-3-540-69738-1 3

Stephen F. Siegel, Manchun Zheng, Ziqing Luo, Timothy K. Zirkel, Andre V. Marianiello, John G.
Edenhofner, Matthew B. Dwyer, and Michael S. Rogers. 2015. CIVL: The Concurrency Interme-
diate Verification Language. In International Conference for High Performance Computing, Net-
working, Storage and Analysis (SC), Jackie Kern and Jeffrey S. Vetter (Eds.). ACM, 61:1–61:12.
DOI:http://dx.doi.org/10.1145/2807591.2807635

Stephen F. Siegel and Timothy K. Zirkel. 2011a. FEVS: A Functional Equivalence Verification Suite
for High-Performance Scientific Computing. Mathematics in Computer Science 5, 4 (2011), 427–435.
DOI:http://dx.doi.org/10.1007/s11786-011-0101-6

Stephen F. Siegel and Timothy K. Zirkel. 2011b. The Toolkit for Accurate Scientific Software. Technical Report
UDEL-CIS-2011/01. Department of Computer and Information Sciences, University of Delaware.

Sarvani Vakkalanka. 2010. Efficient Dynamic Verification Algorithms for MPI Applications. Ph.D. Dissertation.
University of Utah.

Sarvani S. Vakkalanka, Ganesh Gopalakrishnan, and Robert M. Kirby. 2008. Dynamic Verification of MPI
Programs with Reductions in Presence of Split Operations and Relaxed Orderings. In Computer Aided Ver-
ification (CAV) (LNCS), Vol. 5123. Springer, 66–79. DOI:http://dx.doi.org/10.1007/978-3-540-70545-1 9

Antti Valmari. 1989. Stubborn Sets for Reduced State Space Generation. In Advances in Petri Nets 1990
[10th International Conference on Applications and Theory of Petri Nets, Bonn, Germany, June 1989,
Proceedings]. 491–515. DOI:http://dx.doi.org/10.1007/3-540-53863-1 36

Anh Vo, Sriram Aananthakrishnan, Ganesh Gopalakrishnan, Bronis R. de Supinski, Martin Schulz, and
Greg Bronevetsky. 2010. A Scalable and Distributed Dynamic Formal Verifier for MPI Programs. In
High Performance Computing, Networking, Storage and Analysis (SC). IEEE. http://dx.doi.org/10.1109/
SC.2010.7

Chao Wang, Sudipta Kundu, Malay K. Ganai, and Aarti Gupta. 2009. Symbolic Predictive Analysis for Concur-
rent Programs. In FM (LNCS), Vol. 5850. Springer. DOI:http://dx.doi.org/10.1007/978-3-642-05089-3 17

Ruini Xue, Xuezheng Liu, Ming Wu, Zhenyu Guo, Wenguang Chen, Weimin Zheng, Zheng Zhang, and
Geoffrey Voelker. 2009. MPIWiz: Subgroup Reproducible Replay of MPI Applications. In PPoPP. ACM.
DOI:http://dx.doi.org/10.1145/1504176.1504213

Timothy K. Zirkel, Stephen F. Siegel, and Louis F. Rossi. 2014. Using Symbolic Execution to Verify the Order
of Accuracy of Numerical Approximations. Technical Report UD-CIS-2014/002. Department of Computer
and Information Sciences, University of Delaware.

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

