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Abstract
Static assertion checking of open programs requires setting up a
precise harness to capture the environment assumptions. For in-
stance, a library may require a file handle to be properly initialized
before it is passed into it. A harness is used to set up or specify the
appropriate preconditions before invoking methods from the pro-
gram. In the absence of a precise harness, even the most precise au-
tomated static checkers are bound to report numerous false alarms.
This often limits the adoption of static assertion checking in the
hands of a user.

In this work, we explore the possibility of automatically filtering
away (or prioritizing) warnings that result from imprecision in
the harness. We limit our attention to the scenario when one is
interested in finding bugs due to concurrency. We define a warning
to be an interleaved bug when it manifests on an input for which
no sequential interleaving produces a warning. As we argue in the
paper, limiting a static analysis to only consider interleaved bugs
greatly reduces false positives during static concurrency analysis in
the presence of an imprecise harness.

We formalize interleaved bugs as a differential analysis between
the original program and its sequential version and provide various
techniques for finding them. Our implementation CBUGS demon-
strates that the scheme of finding interleaved bugs can alleviate the
need to construct precise harnesses while checking real-life concur-
rent programs.

Categories and Subject Descriptors D.2.4 [Software Engineer-
ing]: Software/Program Verification

General Terms Verification, Reliability

Keywords Concurrency verification, differential analysis, static
analysis, false alarms

1. Introduction
Static analysis is concerned with the problem of finding bugs (or
proving their absence) in code without actually running the code.
In this paper, we apply static analysis to open programs or libraries
(i.e., programs that do not have a main procedure, but instead
expose a set of API methods). In such a setting, the user of static
analysis has to provide a harness that invokes appropriate methods
from the library.
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Often times, the exercise of writing a correct harness is difficult
and error prone when done manually. One reason for this difficulty
is that the libraries usually have undocumented preconditions that
must be satisfied before invoking particular methods. For instance,
before invoking a read operation on a file, the library may assume
that file handle is properly initialized. If one applies static analysis
to such a library without the precondition, the read operation can
fail, and the static analysis will report a bug. However, this does not
reveal any bug in the implementation of the library; instead, it only
reveals a problem with the harness that was used to invoke the li-
brary. Thus, no matter how precise the static analysis is, it is bound
to report false alarms while using underspecified harnesses. In our
experience, the problem of false alarms (including those due to un-
derspecified harness) severely limits the adoption of static analysis
tools that aim at checking user-defined assertions in programs.

The problem of spurious warnings due to underspecified har-
ness does not get better while checking concurrent programs. How-
ever, there is a very natural option for prioritizing false alarms in
order to look for the more interesting warnings:

Find violations to assertions assuming that the sequential
executions of the concurrent program (under a correct har-
ness) do not violate any assertion.

This assumption about the sequential executions being “safe”
may be justified because a program is more likely to be thoroughly
tested for interesting inputs rather than for different interleavings
(as it is beyond the control of a tester).

This assumption immediately leads to pruning of the set of in-
puts to the program: if an input i fails an assertion in the program
in a sequential interleaving, then it has to be an illegal input (that
should have been filtered by a missing precondition in the harness).
Hence, we are left to search for over the space of inputs for which
no sequential execution violates an assertion. If an input in this
space violates an assertion, it has to manifest in a complex inter-
leaving of threads. We term bugs that manifest on such inputs as
interleaved bugs. The static analysis problem then becomes that of
finding interleaved bugs instead of finding all bugs.

Formally, a concurrent program P has an interleaved bug if
some assertion in the program fails for an input i for which no se-
quential interleaving of threads in P result in an assertion failure.1

Interleaved bugs might still be spurious. However, we make the fol-
lowing conjecture based on looking at a large number of spurious
warnings:

If an illegal input (due to an underspecified harness) violates
an assertion, then it does so in a fairly simple execution.

More precisely, whenever an illegal input leads to an assertion fail-
ure, there would be a sequential interleaving witnessing this failure.

1 We formally define the notion of sequential interleavings in §4 as one in
which threads do not interfere with each other.



(It may be possible that a concurrent execution on an illegal input
fails; we are only claiming that in such a case, there would also be
some sequential execution that fails.) Under this conjecture, most
interleaved bugs would correspond to real errors. Our experiments
(§5) support this conjecture: all interleaved bugs that we found were
actual bugs in the program. Although this result might not hold for
all programs, it gives us greater confidence that our approach re-
tains actual concurrency bugs. Note that our technique does not
provide help when one is looking for sequential bugs. We are only
addressing the scenario when one is interested in finding concur-
rency bugs, but static analysis results in many false alarms.

Let us contrast the approach of looking for interleaved bugs
against two other incomparable approaches for filtering warnings.
One possibility is to find (a) the set S of warning locations (failing
asserts) that manifest in sequential executions, and (b) the set C of
warning locations that manifest in concurrent executions, and only
report the locations in the difference of C and S. This approach
does not provide any guarantee on the absence of bugs when the
program has been sequentially verified (unlike our approach). This
is because the presence of a single illegal input that can fail an
assertion sequentially suppresses that assert, even when a legal
input could fail the same assert.

Another approach is to suppress all the sequential traces that vi-
olate an assertion, and only report those traces that have interleav-
ing between threads. This may still report too many false alarms
— it may report trivial interleavings that still transform the shared
state in manner similar to some sequential interleaving. An exam-
ple of such a program is given in §2.2. We believe that interleaved
bugs achieves a good trade-off for suppressing false alarms due to
underspecified environment assumptions while not supressing true
concurrency bugs.

In this paper, we devise algorithms for finding interleaved bugs.
We formalize the problem as a differential analysis of two pro-
grams. For two programs P1 and P2, DIFFERROR(P1, P2) is the
problem of finding an input i such that P2 can fail when started
with i but P1 cannot. In some sense, P1 acts as a filter for P2: run
P2 on an input only when P1 doesn’t fail on it.

Let P be the concurrent program under test. Let Ps be the same
as P but executions of Ps are restricted to be sequential, i.e., Ps can
have multiple threads, but it does not interleave them. We formally
describe how to capture Ps as a program in §4. Then, finding inter-
leaved bugs is the same as solving DIFFERROR(Ps, P ). Although
solving all instances of DIFFERROR is infeasible (it is undecid-
able), we provide techniques (§3) that allow us to find interleaved
bugs in many real-world programs.

We also show that one can choose various interesting underap-
proximations of Ps for the purpose of proving the absence of inter-
leaved bugs; the various choices have impact on the performance
of the analysis.

One technical complication is that DIFFERROR(P1, P2) is
harder when the programs are non-deterministic, i.e., when they
have multiple possible executions for a given input. As with any
static-analysis tool, non-determinism is unavoidable — it comes
comes from modeling of external calls as well as the thread sched-
uler. We give techniques to handle this difficulty.

We have implemented our algorithms for finding interleaved
bugs in a tool called CBUGS that uses POIROT [17], an SMT-based
bug finder, as the static analysis tool. We evaluated CBUGS on (real
and concurrent) Windows device drivers. Examples of false alarms
and real bugs in these drivers can be found in §2.

This paper makes the following contributions:

1. We define interleaved bugs for assertion checking of concurrent
programs (§4), and illustrate its role in reducing false alarms
due to underspecified harnesses.

2. We describe the problem of finding interleaved bugs as an
instance of the DIFFERROR problem for comparing two non-
deterministic programs with respect to a set of assertions, and
various techniques for solving it (§3).

3. Our experiments (§5) show that CBUGS is able to remove all
of the false alarms due to missing preconditions, and retain true
concurrency bugs.

The rest of the paper is organized as follows. In §2, we present
real-world examples to justify our observation on underspecified
harnesses for concurrent programs. In §3, we formalize the more
abstract problem DIFFERROR and present algorithms for solving
it. In §4, we apply DIFFERROR for finding interleaved bugs, and
discuss specific filters and optimizations. In §5, we evaluate our
approach experimentally. In §6, we mention related work.

2. Motivation
We motivate our work with a few real-world examples of checking
properties of concurrent programs, where (a) missing environment
assumptions result in spurious warnings, (b) the spurious warnings
often manifest in sequential traces, and (c) our technique only
reports true concurrency bugs without requiring the user to specify
environment assumptions.

2.1 Example 1
Figure 1 illustrates a simplified version of a bug found by

the STORM [15] tool in a Microsoft Windows device driver
usbsamp [22]. This particular bug is an instance of “use-after-
free” class of bugs where an object is accessed after it has
been destroyed. The method UsbSamp EvtIoRead is a dispatch
routine that handles read requests sent to this driver — denoted
by the Request parameter. Among other things, the method
makes a call to WdfRequestMarkCancelable with the request
and a cancel method UsbSamp EvtRequestCancel; one of the
side-effects of the call is to set a field Request->cancelRoutine
to UsbSamp EvtRequestCancel. After this call, the cancel
method may be called asynchronously on Request by the
device driver to cancel the request by invoking the Cancel
routine. Similarly, the method WdfRequestUnmarkCancelable
sets the Request->cancelRoutine to NULL, disabling the
cancel routine from being invoked. The request is completed
(or destroyed) by a call to WdfRequestComplete method.
The cancel method UsbSamp EvtRequestCancel accesses
fields in the request by a call to GetRequestContext. It
is the responsibility of the driver developer to ensure that a
request is not accessed after being completed. Several guide-
lines such as the following are provided for driver writers
— “If a driver has called WdfRequestMarkCancelable,
and if the driver’s EvtRequestCancel callback function has
not executed and called WdfRequestComplete, the driver
must call WdfRequestUnmarkCancelable before it calls
WdfRequestComplete outside of the EvtRequestCancel
callback function.”2

The use-after-free property can be modeled by (a) introducing a
ghost field completed for each request; it is set to true by a call to
WdfRequestComplete, and (b) guarding every access to a request
Request by the assertion assert(!completed(Request)).
These assertions are implicitly present in this program be-
fore the calls to the methods WdfRequestMarkCancelable,
WdfRequestComplete and GetRequestContext that access
fields in Request.

The routine Test is the harness (or the test driver); it invokes
a set of procedure calls (in BODY:). Some of these procedures may

2 http://msdn.microsoft.com/en-us/library/ff549983(v=VS.85).aspx



1 // Thread T1
2 VOID UsbSamp_EvtIoRead(
3 ...,
4 WDFREQUEST Request
5 ) {
6 ...
7 WdfRequestMarkCancelable(
8 Request,
9 UsbSamp_EvtRequestCancel);

10 ...
11 WdfRequestUnmarkCancelable(
12 Request);
13 ...
14 WdfRequestComplete(Request,
15 status);
16 ...
17 }

1 // Thread T2
2 VOID UsbSamp_EvtRequestCancel(
3 WDFREQUEST Request
4 ) {
5 PREQUEST_CONTEXT rwContext;
6 ...
7 rwContext =
8 GetRequestContext(Request);
9 ...

10 }
11

12 VOID Cancel(WDFREQUEST Request) {
13 f = Request->cancelRoutine;
14 Request->cancelRoutine = NULL;
15 if (f) f(Request);
16 }

1 //Harness
2 VOID Test(
3 ...,
4 WDFREQUEST Request
5 ) {
6 INIT:
7 //assume(!completed(Request));
8 BODY:
9 async UsbSamp_EvtIoRead(..., Request);

10 async Cancel(Request);
11 }

Figure 1. Stripped down version of a bug found by STORM [15] in the usbsamp device driver. The three columns show the two threads and
the test driver (harness).

be executed asynchronously by spawning new threads (using the
async keyword). In addition to the method calls, the user has to
additionally constrain the inputs to the methods. This can be done
by either constructing objects that are passed on to the methods,
or specifying some constraints on the inputs. The (commented out)
“assume” statement in the test is one such constraint that has to
be manually specified to model the environment assumptions for
the open program. Let us understand the need for these assume
statements by looking at the warnings reported by a precise analysis
for this program.

We describe an interleaved trace by a sequence of events
〈. . . , (tid i, li), . . .〉, where tid i ∈ {1, 2, . . .} is a thread identifier
and li is the line number of event. We sometimes avoid specify-
ing all the events in the trace and specify only the end points of an
uninterrupted context in each thread.

1. The trace 〈(1, 2), (1, 7)〉 would cause an assertion failure
for the access to Request in WdfRequestMarkCancelable.
However, this is a spurious warning because the read routine is
called with incomplete requests in any legal execution.

2. The trace 〈(2, 13), (2, 15), (2, 7)〉 is another spurious warn-
ing that may happen if Request->cancelRoutine is set to
UsbSamp EvtRequestCancel, and Request is completed in
the input to Test.

3. The trace 〈(1, 2), (1, 7), (2, 13), (2, 15), (1, 11),
(1, 14), (2, 7)〉 denotes a feasible trace that may cause the de-
vice driver to access a completed request in line 7 in the second
thread. This was the bug reported by STORM [15] and has been
fixed in future versions of the device driver. Note that the bug
manifests in a small window — the instruction (2, 13) has to
be executed between (1, 7) and (1, 11).

It is easy to observe the only the third warning is an interleaved
bug, i.e. it cannot manifest on any sequential interleaving of the
threads. On the other hand, the first two manifest in a sequential
interleaving. Our method only reports the third alarm (without the
need for environment assumption in line 7 in Test that rules out the
first two warnings), thereby reducing false alarms automatically.
On the other hand, if we use a strategy to suppress any error
location that can fail sequentially, we will be unable to discover
this bug.

2.2 Example 2
Figure 2 shows another example where failure to specify environ-
ment assumptions may cause large set of false alarms. The ex-
ample is a simplified version of the serial device driver [22].

The example consists of two threads running two dispatch rou-
tines for write (SerialWrite) and read (SerialRead) respec-
tively. The PIRP structure denotes a pointer to an interrupt re-
quest packet (IRP) or a request, and we check a similar use-after-
free property. The main differences in this example are (1) the
driver explicitly manipulates nested pointer fields in the IRP (e.g.
Tail.Overlay.CurrStckLoc in line 21 of SerialWrite), (2)
the completion routine SerialCompleteRequest may destroy all
pointers reachable from a PIRP pointer that it completes. Unlike the
usbsamp driver in §2.1, the serial driver (an older driver) does
not use much data abstraction mechanisms and often manipulates
deeply nested fields — making it more challenging for analysis. We
have explicitly added the various assertions to model the use-after-
free property.

Ideally, a tool that analyzes the Test harness should report that
there are no assertion violations in this example. This is because
for any concrete execution, the device driver ensures the following
precondition to Test: (a) the pointers reachable from each request
are not completed, and (b) the two requests Irp1 and Irp2 are dis-
joint, i.e., the set of pointers reachable from Irp1 and Irp2 do not
overlap. It is not hard to see that in the absence of such assump-
tions, any tool will yield false alarms. For example, the sequential
warning traces 〈(1, 9), (1, 14)〉 and 〈(2, 9), . . . , (2, 23)〉 require
a precondition that pointers reachable from Irp1 and Irp2 are not
completed. Similarly, the trace 〈(1, 9), (1, 29), (2, 9), (2, 23)〉
requires that two requests have disjoint set of reachable pointers.

One approach taken in practice is to create fresh objects by in-
voking constructors; this ensures that the set of pointers in two re-
quests are disjoint and not completed. However, this approach is
not always desirable for several reasons. First, a freshly created re-
quest packet may not represent the most general request packet and
thereby provide poor coverage of the code it exercises. Secondly,
in our case the routines that create a request resides in the kernel
and may not be invoked from the driver. Therefore, a user of a
tool is forced to write the environment assumptions as a non-trivial
set of precondition constraints in the INIT block (not shown here).
Among the various preconditions, constraining the two requests to
be disjoint is quite cumbersome to express.

Instead, our tool is able to automatically rule out all warn-
ings because UsbSam EvtIoRead and UsbSam EvtIoWrite do
not have any interleaved bugs. An interesting fact about this
example is that the false alarms manifest in both sequen-
tial orderings of threads: SerialWrite;SerialRead as well as
SerialRead;SerialWrite. This observation motivated our def-
inition of interleaved bugs given in §4.



1 // Thread T1
2 VOID
3 SerialWrite(
4 PDEVICE_OBJECT DO,
5 PIRP Irp
6 )
7 {
8

9 PSERIAL_DEVICE_EXTENSION Extn =
10 DO->DevExtn;
11 struct _IO_STACK_LOCATION *csl;
12

13 ...
14 assert(!completed(Irp));
15 Irp->IoStatus.Status =
16 STATUS_SUCCESS;
17

18 ...
19 assert(!completed(Irp));
20 csl =
21 Irp->Tail.Overlay.CurrStckLoc;
22

23 assert(!completed(csl));
24 if (csl->Parameters.Write.Length){
25 //put the write into a queue
26 } else {
27 ...
28 assert(!completed(Irp));
29 SerialCompleteRequest(.., Irp, 0);
30 }
31 }

1 // Thread T2
2 VOID
3 SerialRead(
4 PDEVICE_OBJECT DO,
5 PIRP Irp
6 )
7 {
8

9 PSERIAL_DEVICE_EXTENSION Extn =
10 DO->DevExtn;
11 struct _IO_STACK_LOCATION *csl;
12

13 ...
14 assert(!completed(Irp));
15 Irp->IoStatus.Status =
16 STATUS_SUCCESS;
17

18 ...
19 assert(!completed(Irp));
20 csl =
21 Irp->Tail.Overlay.CurrStckLoc;
22

23 assert(!completed(csl));
24 if (csl->Parameters.Read.Length){
25 //put the read into a queue
26 } else {
27 ...
28 assert(!completed(Irp));
29 SerialCompleteRequest(.., Irp, 0);
30 }
31 }

1 //Harness
2 VOID Test(
3 PDEVICE_OBJECT DO,
4 PIRP Irp1,
5 PIRP Irp2
6 ) {
7 INIT:
8

9 BODY:
10 async SerialWrite(DO,Irp1);
11 async SerialRead(DO,Irp2);
12 }

Figure 2. Simplified example (from serial device driver) illustrating the need for aliasing preconditions.

The reader might argue that we are only looking for buggy
traces that require an “interleaving” of actions from different
threads. However, such a scheme will report numerous warn-
ings for this example. For instance, the assertion in line 23
can fail on many interleavings between the two threads (e.g.
〈(1, 9), (2, 9), (2, 14), . . . , (1, 23)〉).

This example may seem trivial from the perspective of concur-
rency analysis, but that is because we have omitted the synchro-
nization protocol that guards a request among different threads. We
use this example only to show the difficulty of understanding false
alarms and writing preconditions to rule them out manually.

2.3 Non-deterministic filters
As noted earlier, we find interleaved bugs using sequential inter-
leavings as filters. However, the program that captures these inter-
leavings may be non-deterministic, i.e., it may have multiple be-
haviors for the same input state. There are two main reasons for
non-determinism in the filter programs:

• Data non-determinism: The concurrent program may have calls
to external libraries that are modeled non-deterministically. For
example, in order to model GetTimeOfDay, one would write a
model (or stub) that returns any non-deterministically chosen
time (possibly, in an increasing sequence). The sequential pro-
gram inherits these sources of non-determinism.
• Control non-determinism: As we illustrate in §4, the program

representing the sequential interleavings may have a limited
amount of non-determinism in scheduling. For example, the
filter used in §2.2 has to capture scheduling either of the two
threads first.

One of the main technical challenges in this work is to deal with
these non-deterministic filters. Therefore, we start by considering

the problem of comparing two non-deterministic programs in the
next section (§3).

3. Differential error checking
In this section, we study the more abstract problem DIFFERROR of
comparing two (possibly non-deterministic) programs with respect
to a set of assertions. In §4, we apply the results of this section
towards finding interleaved bugs.

3.1 Programs
We consider a simplified syntax for imperative programs with
shared-memory concurrency. We assume that there is a single
global variable g of type T. We intentionally leave T undefined.3 We
only require the presence of certain predicates over T. Let Failed be
a predicate of type T→ Bool.

A program is a list of procedure declarations. Each procedure
takes a single variable of type T as input, returns a single variable
of type T as output, and has a single statement. A program statement
st has the syntax:

st ::= st; st (Sequence)
| if (e) st else st (if-then-else)
| while (e) do st (loop)
| x := e (Assignment)
| assume e (Assume)
| assert e (Assert)
| havoc x (Non-deterministic assignment)
| call x := foo(e) (Procedure call)
| return x (Procedure return)
| async call foo(e) (Thread spawn)

3 One can encode programs with multiple global variables into our syntax
by simply considering T to be a vector of types.



Here e is an expression over variables in scope, using some
operators that we leave undefined. Semantics of our language is
standard. The havoc x statement assigns a non-deterministically-
chosen value to a variable x. An assume e statement blocks in a
state when e does not hold, and has no effect otherwise. An assert e
statement fails in a state when e does not hold, in which case the
control jumps to the end of the program and the global variable g
is modified such that Failed(g) holds. (There is no other way for
Failed(g) to hold.) An async call foo(e) statement spawns a new
thread that executes procedure foo with argument e.

Even though we have defined a compact syntax, we will still
use C-like syntax for easy writing of example programs. We will
sometimes write x = * in place of havoc x

Non-determinism in this language arises from two sources: the
havoc statement induces data non-determinism, whereas concur-
rency (via threads spawned by async statements) induces control
non-determinism. For the rest of this section, we do not distinguish
between these two sources of non-determinism.

We identify a program with the name of its main procedure. At
any point in a program’s execution, we refer to the value of vari-
ables in scope as the program’s state. In particular, the input and
output state of a program is the value of global variable g at begin-
ning and end of the main procedure of the program, respectively.
Given a program P , let FP be its input-output relation: We say that
(s, t) ∈ FP if there is some execution of the program from input s
that ends in a state t. A program has a buggy execution on input s
if (s, t) ∈ FP for some t and Failed(t) holds.

3.2 Problem formulation
In this section, we describe the problem of differential error
(DIFFERROR) in more detail, along with different algorithms to
solve it. We aim to solve DIFFERROR over two programs that ex-
pect the same input. Also, we assume that we are always given
programs with assertions that capture the property of interest. The
DIFFERROR problem can be formally defined as follows.

DEFINITION 3.1 (DIFFERROR). Given two programs P1 and P2,
DIFFERROR(P1, P2) holds if there exists an input state s such that
(1) there is some execution of P2 starting at s that violates an
assertion and (2) no execution of P1 on s can violate an assertion.
We say that P1 acts as an input-filter for P2.

Note that DIFFERROR is harder than standard verification.
Let φ(x, y) be a formula in a decidable fragment of logic, say
quantifier-free first-order logic with equality. Then we can reduce
the satisfiability check of ∃x.∀y.φ(x, y) to the DIFFERROR prob-
lem as follows. Construct two programs P1 and P2 with a global
variable x and local variable y in P1:

P1() {havoc y; assert φ(x, y); }
P2() {assert false; }

Then DIFFERROR(P1, P2) holds if and only if ∃x.∀y.φ(x, y) is
true. Thus, even though verifying P1 and P2 individually is de-
cidable, DIFFERROR(P1, P2) is not (because checking the satis-
fiability of quantified first-order logic with function symbols and
equality is undecidable [3]).

The next few subsections describe a few algorithms for solving
the DIFFERROR problem. In §3.3, we consider the case when the
filter program is deterministic and terminating. In §3.4, we consider
a method for non-deterministic filter programs; the method may not
terminate for all programs. Both these approaches (§3.3 and §3.4)
use quantifier-free reasoning of theorem provers.

3.3 Deterministic filters
When the program P1 is deterministic (i.e., given a fixed input, it
has exactly one execution) and terminating (i.e., given any input,

the program either terminates or fails an assertion in finite amount
of time) then we have an easy way of solving DIFFERROR by re-
ducing it to standard verification. Let P1Assume be a program ob-
tained from P1 by replacing all assert e statements with assume e
statements. Consider the program P , shown in Fig. 3, that executes
P1Assume and P2 on the same input.

var g: T;

Program P() {
var g0 := g;
call P1Assume();
g := g0;
call P2();

}

Figure 3. A program P constructed from two programs P1 and
P2.

Because we have replaced asserts by assumes in P1, the pro-
gram P1Assume will block on all inputs that cause P1 to fail. Con-
sequently, an execution of P on that input will not even reach the
call to P2. Thus, P can only fail on some input i provided P1 does
not fail on i and P2 fails on i, which exactly solves DIFFERROR.

THEOREM 3.2. For a deterministic program P1, the following
statements are true: (a) if the program P in Fig. 3 fails on some
input, then DIFFERROR(P1, P2) holds, and (b) if P1 is also termi-
nating andP does not fail any assertion, then DIFFERROR(P1, P2)
does not hold.

This theorem states that checking DIFFERROR can be reduced
to checking assertions in a program and we can leverage standard
verification techniques. Note that the requirement that P1 is deter-
ministic and terminating is important for this theorem as the next
example shows.

Consider the example in Fig. 4.P1 andP2 are two programs that
take a pointer p as input. The final assert in foo can fail because
the programmer made a mistake: the operation in the else branch
should be subtraction, not addition. We assume that both programs
have implicit assertions for pointer dereferences, i.e., there is an
assert (p != null) before any statement that dereferences p.
The intention is to find a bug in P2 that reveals that the assertion
in the last line can fail. Static analysis of P2 can get distracted and
report that the initial dereference p->x can fail when p == null.
However, solving DIFFERROR(P1, P2) correctly guides us to the
desired bug. P1 will filter out the input p == null because it can
fail on that input.

Note that Thm. 3.2 doesn’t apply for this example because P1

is non-deterministic. If we were to construct the program P as
in Fig. 3, then P can still fail on input p == null. A similar
argument holds when P1 is non-terminating. For example, consider
a program P1 with a single statement assume false. This program
never fails, and should not filter any input for P2. However, for the
program P of Fig. 3, it will block all input from reaching P2.

3.4 Non-deterministic Filters
We now describe a technique for solving DIFFERROR(P1, P2)

that can handle non-deterministic filter programs. However, the
technique may fail to terminate on all programs, even when both
P1 and P2 are bounded-length programs.

First, note that the construction of Fig. 3 is useful even when
the filter program P1 is not deterministic (but terminating) because
then P necessarily fails less often than P2. More specifically, P
does not fail on those inputs on which P1 deterministically fails
(i.e., every execution of P1 fails). Hence, we can always replace P2

by P .



P1 P2

struct ST *p;

void bar() {
int t; havoc t;
if(t) {

p->x = 0;
}

}

struct ST *p;

void foo() {
int x;
p->x = 0;
if(p->y > p->x) {

t = p->y - p->x;
} else {

t = p->x + p->y;
}
assert(t >= 0);

}

Figure 4. A non-deterministic filter program.

Algorithm 1 Algorithm for solving DIFFERROR

Require: Programs P1 and P2

1: loop
2: r1 := FINDBUG(P2)
3: if r1 = NOBUG then
4: return NOBUG
5: end if
6: Let TRACE(t, i) = r1
7: r2 := FINDBUG(P1, i)
8: if r2 := NOBUG then
9: return r1

10: end if
11: Let TRACE(t′, i) = r2
12: φ := pre(Determinize(t′), true)
13: P2 := assume ¬φ;P2

14: end loop

Our algorithm is shown in Alg. 1. It uses a static-analysis tool,
which we call FINDBUG. We assume that FINDBUG, given a pro-
gram with assertions, either returns NOBUG (meaning that the pro-
gram has no bugs) or returns TRACE(t, i), meaning that the pro-
gram can fail on input i and t is the execution trace witnessing
that failure. A trace consists of a sequence of program statements
(in the order in which they got executed), along with values of vari-
ables at each point in the trace. FINDBUG can also be supplied with
an input, in which case it only checks the program under that input.
Alg. 1 returns its output in the same format as FINDBUG: it returns
NOBUG if there is no input for which DIFFERROR(P1, P2) holds;
or returns TRACE(t, i) such that DIFFERROR(P1, P2) holds and t
is an execution of P2 that fails on input i (but P1 does not fail on
input i).

The algorithm works by iteratively filtering away more and
more inputs. If it finds a bug in P2 (line 2), then it checks to see
if P1 has a bug on the same input i (line 7). If P1 doesn’t, then it
returns this input (line 9). If P1 does have a bug, then i needs to
be filtered. For this, it uses a modification of the trace t′ itself to
create a deterministic filter f (line 12) that filters out i as well as
other inputs that cause P1 to fail along the trace t′. In some sense,
f acts as a sub-filter that filters out some of the input that causes P1

to fail.
The procedure Determinize(t′) takes a trace t′ and performs the

following modification to it — it replaces the havoc x statements
with x := c, where c is the concrete value assigned to x in
the trace. The predicate transformer pre(t, ψ) takes a trace t (a
sequence of statements) and a formula ψ and returns a formula
representing the path condition in terms of the inputs to the trace. It
is defined inductively on the structure of the trace as follows (note

that Determinize removes havoc statements from the trace):

pre(skip, ψ) = ψ
pre(assume φ, ψ) = φ ∧ ψ
pre(assert φ, ψ) = ¬φ ∧ ψ
pre(x := e, ψ) = ψ[e/x]
pre(s; t, ψ) = pre(s, pre(t, ψ))

Fig. 5 (a) shows an example of a trace that fails the assertion
in P1 in Fig. 4. For the statement havoc t, we indicate the value
(say, 5) assigned to t in the trace. Fig. 5 (b) shows the formula φ
constructed in line 12, which is equivalent to p == null.

havoc t; // 5
assume t != 0;
assert p != null;

(5 != 0 && p == null)

(a) (b)

Figure 5. (a) A trace through P1 from Fig. 4 and (b) the corre-
sponding formula.

The most expensive parts in Alg. 1’s loop are the calls to FIND-
BUG. One can optimize these calls in cases when FINDBUG is in-
cremental. For instance, the calls on line 2 always contains the same
program pre-pended with an increasing list of assume statements.
The calls on line 7 are to the same program but with different in-
puts. Thus, any information that FINDBUG infers about P1 or P2

can be retained across iterations.

THEOREM 3.3. The following statements are true. (a) If Alg. 1
returns NOBUG, then DIFFERROR(P1, P2) does not hold, and (b)
if Alg. 1 returns TRACE(t, i) then DIFFERROR(P1, P2) holds and
input i and trace t are the witnesses.

Alg. 1 is not guaranteed to terminate (even for bounded-length
programs), which is expected because DIFFERROR is undecidable
in general. However, it does terminate for bounded-length pro-
grams with bounded non-determinism. Formally, non-determinism
in a program is bounded if for any non-deterministic choice value
v in the program, v only appears in expressions of the form v on c,
where on∈ {=,≤, <} and c is a constant. This subsumes the case
when v is Boolean, i.e., v ∈ {true, false}. We did not come across
unbounded non-determinism in our experiments.

Consider the example in Fig. 6, where the hashFunc is a
procedure with complex operations to compute the hash value of an
input. It is not hard to see that DIFFERROR(P1, P2) does not hold
for this example. However, Alg. 1 will diverge by enumerating all
the possible values of the non-deterministic choice of i in P1. (The
variable j in P1 is not necessary for the divergence.)

There are several ways to extend our approach to deal with such
cases, at the cost of predictability. A natural extension is to set
a bound k on the number of times a source of non-deterministic
values participates in Determinize during the execution of Alg. 1.
After this threshold is exceeded, we perform pre(, ) on the trace
t′ directly instead of determinizing it. We extend pre(, ) for havoc
statements:

pre(havoc x, ψ) = ∃x. ψ
This results in quantified filters in line 13 of Alg. 1. For the above
example with k = 0, we will generate the filter:

¬(∃i, j :: j 6= 0 ∧ ¬a[i] ≥ 0)

If FINDBUG is able to reason about such quantifiers, then we will
be able to prove that DIFFERROR(P1, P2) does not hold for this ex-
ample. However, if FINDBUG is unable to reason precisely about
these quantifiers, then Alg. 1 may diverge enumerating the same
path in P1. For example, if FINDBUG is an SMT-based theorem
prover, the quantified verification condition generated may not be



void P1(int a[], int b){
int i = *;
int j = *;
if (j != 0)

assert a[i] >= 0;
}

void P2(int a[], int b){
int i = hashFunc(b);
assert a[i] >= 0;

}

Figure 6. Example where Alg. 1 diverges.

amenable to the trigger-based schemes for instantiating quanti-
fiers in most SMT solvers [7] — there is no good trigger for the
bound variable j in the formula above (this is the reason why j is
present in P1). The above formula would need some simplifications
(e.g. quantifier elimination) in conjunction with quantifier instan-
tiations. We also present a variant of this idea in Appendix A that
instead produces a quantified formula to precisely describe whether
DIFFERROR(P1, P2) holds for bounded programs, and then hands
it off to a theorem prover. The main difference is that it pushes the
divergence from within Alg. 1 to within the theorem prover.

4. Interleaved bugs
We now return to the topic of finding interleaved bugs for con-
current programs in the presence of underspecified harnesses. We
start by defining the problem formally, show how it can be cast as
a DIFFERROR problem, and then describe a few optimizations spe-
cific to our setting.

Let P be a concurrent program with dynamic thread creation
(using async statements). We define a non-interleaved program
execution to be one that has a single-thread of execution. Formally,
a non-interleaved execution, while executing thread T1, follows one
of two possibilities at an async statement that spawns thread T2:

• T1 waits for T2: The spawned thread T2 executes immediately
and T1 waits until T2 and any thread spawned by T2 completes.
Additionally, while T2 is executing, any async call must follow
this same option. In some sense, the async call acts like a
synchronous procedure call.
• T2 waits for T1: The spawned thread T2 does not execute until
T1 finishes. When T1 finishes, any of the threads spawned by it
can start executing.

Let F seq
P be a subset of FP such that (s, t) ∈ F seq

P if and only if
(s, t) ∈ FP and there is some non-interleaved execution of P from
input s that ends in state t. Our intuition is that assertion violations
resulting from illegal inputs will often manifest in non-interleaved
executions. Thus, they will be captured in F seq

P .

DEFINITION 4.1 (Interleaved bug). A program P has an inter-
leaved bug if there is a pair of states (s, t) ∈ FP such that Failed(t)
holds and for all (s, t′) ∈ F seq

P , Failed(t′) does not hold.

We find interleaved bugs using DIFFERROR.

THEOREM 4.2. Given two concurrent programs P and Q the
following statements are true. (i) If FQ ⊆ F seq

P and
DIFFERROR(Q,P ) does not hold, then P has no interleaved bugs.
(ii) If F seq

P ⊆ FQ and DIFFERROR(Q,P ) holds, then P has an
interleaved bug.

Thm. 4.2 suggests that it suffices to work with underapproxi-
mations of F seq

P while proving the absence of interleaved bugs and
overapproximations of F seq

P while proving the presence of inter-
leaved bugs. In §4.1 and §4.2, we define under-approximate filters
as programs. In §4.3, we define the program that captures F seq

P pre-
cisely. In each case, we define the filter using a syntactic program
transformation, and the resultant filter is a sequential program.

void AsyncAsEventsOrGeneral(args) {
EventSet = new MultiSet<Event>();
EventSet.Add(new Event(main, args));
while(!EventSet.empty()) {

let (f,e) = EventSet.GetAny();
f(e);

}
}

Figure 7. Entry procedure for AsyncAsEvents and
AsyncGeneral .

4.1 Filter: AsyncAsSync

The filter program AsyncAsSync always chooses the behavior
where the async statement is treated as a synchronous procedure
call that executes immediately. This corresponds to the first option
in the definition of non-interleaved executions. The use of this filter
is desirable as it can lead to a deterministic filter if the program does
not make use of data non-determinism (or the non-determinism
does not influence the assertions).

This filter can be obtained from P simply by replacing all async
calls with normal procedure calls. The program shown in Fig. 1
uses this filter to remove all non-interleaved bugs.

4.2 Filter: AsyncAsEvents

The filter program AsyncAsEvents explores all behaviors in
which spawned threads are delayed until the parent thread finishes.
This corresponds to the second option in the definition of non-
interleaved executions.

We capture this filter as an event-driven program. Note that
an async call, in this case, is like posting an event that has to be
processed when the current event finishes. This behavior is typical
of event-driven programs.

Let main be the entry procedure of P . Let EventSet be a
multiset of events, where each event is a function pointer along
with its arguments. The filter has the entry procedure shown in
Fig. 7. It initializes the set of events with the main procedure and
then executes an arbitrary event from EventSet in a loop. Events
are added to the set by executing a async statement; the following
transformation is applied to each async statement:

async foo(e) 7→ EventSet.Add(new Event(foo, e))

It is easy to see that a spawned thread does not execute until the
parent thread finishes.

There are several existing analyses of event-driven programs.
The work by Sen and Viswanathan [18] discusses the complexity
of analyzing such programs. Jhala and Majumdar [13] present a
software-model-checking approach, and Emmi et al. [10] present
an underapproximate SMT-based analysis. A real-world example
where this filter is required is described in §5.1.2. In our experi-
ments, we use a tool based on the approach of Emmi et al. [10].

Remark. When the concurrent program P has synchro-
nization (e.g., thread join operations) then it is possible that
AsyncAsEvents may deadlock. This is acceptable in our setting
because we do not consider deadlocks to be bugs.

4.3 Filter: AsyncGeneral

The AsyncGeneral filter program explores all non-interleaved ex-
ecutions. Such a program can have strictly more behaviors than
both previous options put together. This is because it allows an exe-
cution to follow the first option (in the definition of non-interleaved
executions) in some places and to follow the second option in other
places.



NTSTATUS
IoCreateDevice(...,

OUT PDEVICE_OBJECT *DeviceObject)
{

PDEVICE_OBJECT deviceObject;

int x = nondet();
if (x == 0) {

// Allocate device
deviceObject = (PDEVICE_OBJECT)

malloc(sizeof(DEVICE_OBJECT));
...
*DeviceObject = deviceObject;
return STATUS_SUCCESS;

} else if (x == 1) {
// Fail
return STATUS_INSUFFICIENT_RESOURCES;

} else if (x == 2) {
// Fail
return STATUS_OBJECT_NAME_EXISTS;

} else ...
}

Figure 8. Stub for IoCreateDevice.

Let main be the entry procedure of P . Let EventSet be as de-
fined in §4.2. The AsyncGeneral filter has the same entry pro-
cedure as AsyncAsEvents . The difference is in the transforma-
tion of async statements. We add a Boolean variable First to
AsyncGeneral , initialize it to false, and then carry out the fol-
lowing transformation:

async foo(e) 7→
if(First) {

foo(e);
} else if(nondet()) {

First = true; foo(e); First = false;
} else {

EventSet.Add(new Event(foo, e));
}

The variable First is true when we have decided to execute a
spawned thread immediately. In this case, any recursively spawned
thread must also be executed immediately. When First is false,
we non-deterministically decide between two options: execute the
thread immediately or delay it until the current thread finishes.

4.4 Non-determinism
The filters defined in previous sections have multiple sources of
non-determinism (which justifies our interest in non-deterministic
filters). The main source of non-determinism is from the environ-
ment. As for any static analysis tool, one has to close the pro-
gram by writing stubs for the environment (such as the opera-
tion system). These stubs over-approximate the environment and
are inherently non-deterministic. For instance, in order to model
IoCreateDevice system call in Windows4, we used the stub
shown in Fig. 8. It can non-deterministically choose to allocate the
device object or fail and return one of a fixed number of error codes.
These stubs were created for an earlier study on static analysis; we
did not modify them.

Another source of non-determinism is in modeling the filters
themselves. Both AsyncAsEvents and AsyncGeneral have non-
determinism in the order in which they pick events. The filter
AsyncAsSync does not add any extra non-determinism.

The stub in Fig. 8 and the filter structure both induce a
bounded amount of non-determinism, which is suitable for our

4 http://msdn.microsoft.com/en-us/library/ff548397(v=vs.85).aspx

int x;
void main(int *p) {

x = 0;
async foo();
async bar(p);

}
void foo() {

if(x == 0) x = 1;
if(x == 2) x = 3;

}

void bar(int *p) {
L1:

if(nondet()) {
if(x == 1) x = 2;
if(x == 3)

L2: *p = 10;
} else {

L3: *p = 5;
}

}

Figure 9. Example to show incompleteness of the optimization.

lazy algorithm (§3.4). However, some stubs have unbounded-
nondeterminism. For instance, the stub that we use for malloc is
one that can return any address which has not been previously allo-
cated. However, such unboundedness has never been a problem in
our experiments. One reason could be that programs (and, conse-
quently, bugs) do not rely on the actual address values.

4.5 Optimizations
For the purpose of finding interleaved bugs, we have a special
instance of DIFFERROR(P1, P2), namely one in which FP1 ⊆
FP2 . In this setting, we can optimize Alg. 1 by avoiding a few calls
to FINDBUG.

More concretely, let (t, i) be as defined on line 6 of Alg. 1.
Then t is a concurrent execution, possibly with many threads. We
can permute statements in t such that the resulting trace conforms
to the filter in use, and then check the feasibility of the resulting
trace. For example, let t have two threads T1 and T2, and consists
of statements executed in the following order:

t = (a1; a2; a3; b1; b2; a4; a5; b3; b4; a6; )

where the ais refer to statements fired by T1, and the bis refer
to statements fired by T2. Further, let a3 be the statement that
spawns thread T2. Let t1 and t2 be the following permutations of
statements in t:
t1 = (a1; a2; a3; b1; b2; b3; b4; a4; a5; a6; )
t2 = (a1; a2; a3; a4; a5; a6; b1; b2; b3; b4; )
Then t1 conforms to AsyncAsSync, t2 conforms to
AsyncAsEvents , and both conform to AsyncGeneral . Suppose
we are using AsyncAsSync as the filter, and t1 happens to be
feasible on input i (i.e., i satisfies pre(t1, true)), then we can let r2
be TRACE(t′, i) and jump to line 11, thereby avoiding the call to
FINDBUG on line 7. In general, there are many ways to permute
a given concurrent trace to make it correspond to a filter. In our
implementation we try a few permutations. If any of these work,
then we can avoid a call to FINDBUG.

Note that this optimization does not work the other way. Con-
sider the example shown in Fig. 9, where every dereference is im-
plicitly protected by a null-pointer assertion. It has an execution
that fails on line L2 that requires four context switches and no se-
quential permutation of this execution is feasible. However, we can-
not conclude that the execution is an interleaved bug because there
is a sequential execution on the same input (but takes a different
path due to the non-determinism at L1) that fails at label L3.

5. Evaluation
We implemented Alg. 1 (mentioned in §3) on concurrent programs
in a tool called CBUGS. It first uses the AsyncAsSync filter. If it does
not find bugs in the presence of this filter, then it stops. Otherwise,
it uses the AsyncGeneral filter and reports resulting bugs as inter-
leaved bugs. The use of AsyncAsSync is an optimization because
it is easier to analyze than AsyncGeneral. CBUGS uses POIROT as



the tool for finding bugs in concurrent programs, i.e., POIROT acts
as FINDBUG in Alg. 1. POIROT is one of the bug-finding tools for
concurrent programs that uses iterative context-bounding to look
for bugs [6, 15, 17].

We conducted experiments to evaluate CBUGS on two goals.
First, can CBUGS rule out bugs caused by illegal input, while
retaining the true bugs? Second, we compare CBUGS against a
different filtering strategy, namely one that filters based on asserts.
In this strategy, if a sequential trace leads to an assertion violation,
then we remove that assertion and repeat until no more warnings
are produced.

5.1 Results
We chose a collection of Windows device drivers from the
WinDDK suite [22] for conducting experiments. Some of these
drivers were manually seeded with bugs by others in an indepen-
dent study. To the best of our knowledge, these are the only bugs
present in the code. We suffix the driver name with “ bug” when
it has a (single) seeded bug. This allows us to conduct a controlled
study. None of the drivers have a precise harness.

We checked the “Cancel” property (mentioned in §2) as well
as for null-pointer dereferences (“NullDeref”). The results are re-
ported in Fig. 10. Each row of this table has: the name of the driver
(Name); the number of non-empty non-assert lines of code exer-
cised by tool (LOC) along with the number of assertions shown
in parenthesis; the property being checked (Prop.); and the type of
bug present in the code (either “none” or “interleaved” or “sequen-
tial”). The next column (#LF) is the number of iterations of Alg. 1,
i.e., the number of lazy filters generated by CBUGS. The rest of
the columns show the number of false positives (#FP) and false
negatives (#FN) of the two approaches and the total time taken to
generate all the warnings (barring the manual effort of classifying a
warning as a true or false positive). Whenever CBUGS used Async-
General for generating a lazy filter, we mention it in the (#LF) col-
umn with “AG”.

For instance, the first row is for the daytona driver with the
cancel property. The driver does not have any actual bugs, however,
when we run static analysis (FINDBUG), it reports a warning (false
positive) because of the imprecise harness. CBUGS, on the other
hand, suppresses this warning automatically (it generates one lazy
filter).

Our experiments show: (1) CBUGS does not report any false
positives, whereas the assert suppression technique reported 63
false positives; (2) CBUGS did not miss any of the interleaved bugs,
whereas assert suppression missed one in mouclass bug2; (3) the
use of AsyncAsSync is a useful optimization and is enough to rule
out false warnings in most cases. As expected, CBUGS also ends
up suppressing true sequential bugs, however, it demonstrates good
results for catching concurrency bugs.

We now explain some of the results in more detail, to illustrate
the need for AsyncGeneral and the kinds of preconditions that these
drivers required.

5.1.1 Cancel Property on ndisprot

The existing harness for the ndisprot device driver (for the Can-
cel property) added two preconditions: (1) a particular lock must
be initialized, and (2) a doubly-linked list (of requests) is empty.
Although the first is a valid precondition, the second one is the sim-
plest way to establish the actual preconditions: (a) the incoming re-
quest does not belong to the list, and (b) the list is well-formed dou-
bly linked list that respects the relationships between the forward
and the backwards links. Unless the latter is enforced, the pointer
manipulations performed to insert or delete an element of the list
does not have the desired effects. Both these preconditions are very
hard to express for low-level C programs, even for bounded lists.

void ReadFn(PIRP irp) {
if(irp->b) {

*irp->ptr = 10;
}
if(irp->cancel) {

Foo(irp);
}

}
void Foo(PIRP irp) {

*irp->ptr = 10;
}

void CancelFn(PIRP irp) {
irp->cancel = true;

}

void Test(PIRP irp) {
async ReadFn(irp);
async CancelFn(irp);

}

Figure 11. Example of null-dereference checking on daytona
driver. Every dereference of a pointer has an implicit non-null
check preceding it.

However, by limiting the input to contain an empty list, most of
the interesting logic related to list traversal in the code does not get
exercised.

There are three versions of this driver, depending on which
dispatch routine is chosen (read, write, or ioctl). In the ab-
sence of preconditions, we get false alarms in each of the three
versions, whereas CBUGS does not report any false alarms. For
read, CBUGS requires the use of AsyncGeneral filter. With Asyn-
cAsSync alone, it reports a false alarm where the input list is not
well-formed. This example shows that in the presence of compli-
cated preconditions, one needs AsyncGeneral, although at the ex-
pense of more runtime.

5.1.2 Null-Dereference Checking
We also checked several drivers for the absence of null-
dereferences. Each pointer dereference was preceded with a non-
null assertion. As shown in Fig. 10, this property introduced a large
number of assertions in the program.

Fig. 11 shows an example (motivated by daytona) that requires
the AsyncGeneral filter to remove the false alarms. The harness
Test needs the preconditions that both irp and irp->ptr are
non-null, to ensure that the concurrent program does not fail any
assertions. It is easy to observe that the illegal inputs where irp
is null fails by executing ReadFn(irp) sequentially, and is, thus,
filtered away by AsyncAsSync.

Consider the non-null check for the dereference *irp->ptr. If
we restrict the executions of Test to only consider AsyncAsSync,
the *irp->ptr is dereferenced only when either irp->b or
irp->cancel is set in the input. This implies that using the
AsyncAsSync filter will generate failure traces where the body
of CancelFn is executed before the test on irp->cancel inside
ReadFn. However, using the AsyncGeneral filter, we can defer
ReadFn to execute after CancelFn has executed, thereby failing
the assertion on any input. A similar situation requires the use of
AsyncGeneral for the example in §2.2.

6. Related work
In this paper, we presented an approach for reducing false alarms
due to underspecified environments during static assertion checking
in concurrent programs, by using the sequential behaviors as an
oracle. We position our work in the context of previous work in
each of the italicized areas in the next few subsections.

6.1 Filtering static analysis alarms
Engler et al. [11] propose a method of discovering bugs by observ-
ing inconsistent behavior in source code. Dillig et al. [9] provide
a semantic basis for finding such inconsistent behaviors by posing
the problem as a type-inference problem. Both these approaches
have been applied to find null dereference errors in large sequential



Name LOC Prop. Buggy? CBUGS Assert Supression
(Asserts) #LF #FP #FN Time #FP #FN Time

daytona 485 (10) Cancel No 1 0 0 122 1 0 17
daytona bug1 484 (10) Cancel Seq. 2 0 1 136 1 0 21
daytona bug2 485 (10) Cancel Int. 1 0 0 110 1 0 34
daytona bug3 484 (10) Cancel Seq. 2 0 1 161 3 0 41
daytona bug4 485 (10) Cancel Seq. 2 0 1 162 1 0 19
daytona bug5 485 (10) Cancel Int. 1 0 0 126 1 0 29
ndisprot read 588 (35) Cancel No 10 (AG) 0 0 2894 3 0 38
ndisprot write 588 (35) Cancel No 4 0 0 217 1 0 15
ndisprot ioctl 588 (35) Cancel No 7 0 0 424 1 0 32
mouclass bug1 582 (19) Cancel Seq. 10 0 1 905 4 0 131
mouclass bug2 582 (19) Cancel Int. 10 0 0 944 3 1 186
daytona 485 (223) NullDeref No 13 (AG) 0 0 459 3 0 43
kbdclass read 695 (346) NullDeref No 1 0 0 227 11 0 846
kbdclass ioctl 695 (346) NullDeref No 1 0 0 229 10 0 737
mouclass read 582 (271) NullDeref No 1 0 0 98 10 0 965
mouclass ioctl 582 (271) NullDeref No 1 0 0 91 9 0 918

Figure 10. Results obtained from running CBUGS on Windows device drivers. Times are in seconds.

codebases. These work can also be seen as filtering false alarms
if usage is consistent with some (unknown) protocol; e.g., if all
dereferences of a variable x is not protected by a null-check, the
accesses to the variable is most likely safe due to some invariant
in the program. One can think of interleaved bugs as discovering
inconsistencies (with respect to a given set of assertions), where
the sequential behaviors describe an implicit protocol. On the other
hand, unlike these approaches, we do not require a separate analy-
sis for different patterns and provide a formal guarantee of relative
correctness if there are no interleaved bugs.

Approaches for suppressing or ranking warnings have ranged
from statistical techniques (such as Z-ranking [14]) to more domain
specific methods (such as suppressing data-race warnings [21]). Al-
though these approaches are applied to the results of static analyses
that scale to large modules, they do not provide any formal guar-
antees of the bugs that are suppressed. Besides, most of these ap-
proaches are aimed at combating the imprecision of static analysis,
as opposed to the environment problem.

6.2 Sequential filters
The idea of using sequential behaviors as oracle for concurrent im-
plementations has been studied in the context of checking lineariz-
ability [12], which provides a natural specification in many settings
for checking concurrent programs. Various static and dynamic tools
have been built to check concurrent behaviors against sequential
ones. LINEUP is a dynamic analysis tool that flags a concurrent
behavior when it outputs a value that no sequential execution pro-
duced [4]. Burnim et al. [5] provide runtime techniques to check
parallel implementations against non-deterministic sequential spec-
ifications. Siegel et al. [19] employ symbolic execution along with
enumeration of interleavings to check against the sequential behav-
iors for numerical programs. Unlike these approaches, we consider
the dual problem when specifications are present in the program but
the environment is imprecise. Because we check for user-specified
assertions, we can apply the technique to any concurrent program
even if it is not linearizable.

6.3 Environment synthesis
Generating environments for model checking of open systems is
a well-studied problem. Tkachuk et al. [20] generate environment
models from user-specified assumptions and by analyzing envi-
ronment implementations. Alur et al. [1] address the problem of
synthesizing the most liberal environment using a combination of

predicate abstraction and automata learning. One can view our ap-
proach as inferring the most liberal environment that does not in-
duce failures on sequential executions, and using it to check the
concurrent program. As demonstrated in §5, inferring legal envi-
ronment preconditions may involve inferring complex aliasing re-
lationships on the input data that may not be amenable to finite-
state approaches. Nonetheless, it would be interesting to combine
synthesis techniques with our algorithm.

7. Conclusion
In this paper, we highlight the problem of false alarms in static anal-
ysis due to missing environment assumptions and present a solution
when checking assertions in concurrent programs. We define a class
of warnings as interleaved bugs when they are retained by a filter
that attributes all warnings in the sequential interleavings to the un-
derspecified harness (or to missing preconditions). We believe this
can be an effective way to prioritize high quality warnings when
looking at warnings generated by a static analyzer for concurrent
programs. Our preliminary experience with a simple implementa-
tion to find interleaved bugs is encouraging, although we expect
more work to deal with unbounded non-determinism in the filter
programs.

More generally, the paper makes one of the first contributions to
the area of using semantic techniques for prioritizing alarms from
static analysis. Sequential filters are natural filters when prioritiz-
ing alarms for concurrency analysis. We believe that one can ex-
tend this idea to use artifacts other than sequential executions in
the source code to automatically define filter programs for other
domains as well.
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A. Quantified VC generation
In this section, we describe a method for generating a (quantified)
verification condition (for bounded-length programs) in the pres-
ence of non-deterministic and possibly non-terminating filter pro-
grams.

Recall that the goal of DIFFERROR(P1, P2) is to filter any in-
put i, such that there is some choice of the non-deterministic val-
ues in P1 that fails P1. This implies that the non-determinism
in P1 is angelic (in contrast to the demonic nondeterminism in
P2). One option is to extend our language (in §3.1) to introduce
a statement choose x (in addition to havoc x), to model the an-
gelic non-determinism. And then create a program similar to one
described in Fig. 3, where we replace the havoc x statements in P1

with choose x statements, in addition to the transformation of the
assert e statements.

However, we are not aware of any efficient verification con-
dition (VC) generation algorithm in the presence of such non-
determinism. Let us highlight one of the main difficulties of ex-
tending VC generation algorithms with choose statements. Most
efficient VC generation algorithms (see [2]) generate a formula
whose size is at most quadratic in the size of the program. This
is achieved by using a variant of static single assignment, where
auxiliary variables are introduced to hold different incarnations
of a program variable after an assignment, a havoc statement, or
at merge points. These variables are implicitly universally quan-
tified in the resultant VC (when checking for validity). The pres-
ence of choose statements introduces an existential quantifier (e.g.
wlp(choose x, φ) = ∃x.φ, whereas wlp(havoc x, φ) = ∀x.φ,
where wlp(., .) refers to weakest liberal precondition predicate
transformer [8]). This interacts badly with the use of auxiliary vari-
ables in the VC, as determining quantification (∀ vs. ∃) of a partic-
ular variable and the nesting can be challenging.

Instead, we present (in Alg. 2) a VC generation mechanism for
DIFFERROR that leverages off-the-shelf VC generation along with
symbolic execution along error paths, to lazily add the quantifier
alternation. The idea is simple: we enumerate all the program paths
in P1 that lead to an assertion violation, and create an expression
(purely in terms of the inputs to P2) that characterizes all the
conditions under which P1 fails. We generate a VC for P2 using
any off-the-shelf VC generation technique after blocking all these
inputs.

The formula φ represents the set of inputs for which there is a
choice of the non-deterministic values such that an assertion in P1

fails. Similarly, the set A represents a set of paths in P1 that lead
to an assertion violation. These variables are initialized to false and
{} respectively (line 1 and line 2). The loop from line 3 to line 11
enumerates different paths in P1 that fail an assertion. We use an
oracle FINDBUG (in line 4) that takes as arguments (i) a program
and a (ii) set of paths and finds an error trace that avoids the set of
paths specified, or NOBUG therwise (indicating that there are no
bugs). FINDBUG can be implemented by augmenting VC genera-
tion to avoid a set of paths while checking assertions [16]. Once
all the error paths have been explored, the algorithm computes the
VC for P2 after “blocking” all the inputs in φ using assume ¬φ
(line 6). Otherwise, for a given error r, we extract the error trace t
and the input i and update A and φ respecively (line 9 and line 10).

The predicate transformer wlp(., .) is extended for havoc state-
ments:

pre(havoc x, ψ) = ∃x. ψ
Observe that pre(t, true) is a formula whose free variables are
inputs to P1, and can be massaged to a formula of the form
∃x1, . . . , xk.φ′, where φ′ is a ground formula, after renaming the
bound variables introduced due to havoc to avoid variable capture.



Algorithm 2 Algorithm for generating a VC for DIFFERROR

Require: Programs P1 and P2

Ensure: A formula representing the VC for DIFFERROR(P1, P2)
1: φ := false
2: A := {}
3: loop
4: r := FINDBUG(P1, A)
5: if r = NOBUG then
6: return VC(assume ¬φ; P2.body)
7: end if
8: Let TRACE(t, i) = r
9: A := A ∪ {t}

10: φ := φ ∨ pre(t, true)
11: end loop

THEOREM A.1. Given programs P1 and P2, if ψ be the formula
returned by Alg. 2, then DIFFERROR(P1, P2) holds if and only if ψ
is satisfiable.

It is interesting to note that the theorem above holds even when
the filter program P1 does not terminate on some inputs — this
is because we only enumerate paths in P1 that lead to an assertion
violation. For instance, if we consider the non-terminating example
from §3.3, where P1 was simply assume false, then we will not find
any bugs in P1, and Alg. 2 will simply return the VC of P2.

Consider the example in Fig. 6, where the hashFunc is a
procedure with complex operations to compute the hash value of
an input. It is not hard to see that DIFFERROR(P1, P2) does not
hold for this example. However, Alg. 1 will diverge by enumerating
all the possible values of the non-deterministic choice of i in
P1. Instead, Alg. 2 generates the following precondition to P2 by
capturing all the inputs that fail P1:

¬(∃i, j :: j 6= 0 ∧ ¬a[i] ≥ 0)

which is equivalent to ∀i :: a[i] ≥ 0, and sufficient to prove the
assertion in P2 for any implementation of hashFunc.

Although the algorithm presented here generates a precise
VC for the DIFFERROR problem, the undecidable nature of the
DIFFERROR problem precludes any algorithm to solve all instances
of the problem. The algorithm presented here may not be complete
due to the incompleteness of automatic theorem provers to deal
with quantifiers in the resulting VC. For example, the quantified VC
generated may not be amenable to the trigger-based schemes for in-
stantiating quantifiers in most SMT solvers [7] — there is no good
trigger for the bound variable j above. The above formula would
need some simplifications (e.g. quantifier elimination) in conjunc-
tion with quantifier instantiations. Nevertheless, by translating the
DIFFERROR(P1, P2) to a logical formula, we can hope to leverage
advances in automated theorem provers to obtain more precise and
efficient solution for DIFFERROR(P1, P2).


