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ABSTRACT

Programmable data planes provide exciting opportunities to realize
fast, accurate, and data-driven control-loop decisions. Many data
plane systems have been proposed for handling network dynamics
(e.g., congestion, failures) in near real-time. The core of these sys-
tems has packet-processing data-plane algorithms that continuously
monitor traffic and respond automatically. Despite their benefits,
automatic response to network events lead to increase in potential
sources of inputs, and hence, increase in attack surface.

This paper takes a step towards securing such systems by (1)
identifying possible attacks on recently proposed data-driven data-
plane systems; and (2) designing a scalable tool for detecting such
attacks at run time. Our approach models plausible expected behavior
and uses the model as a reference to check whether the system is
under attack. We conduct preliminary experiments to demonstrate
the feasibility of our detection methodology.
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1 INTRODUCTION

Recent advancements of programmable switches [11] enable pro-
gramming packet-processing behavior in the data plane using high-
level domain-specific networking languages like NPL [4] and P4 [6].
This has opened up a wide range of opportunities to solve net-
work problems considered difficult and complex in traditional fixed
pipeline switches.

Recent works such as HULA [19], Contra [15], Blink [14], Net-
Cache [8], leverage these advancements and propose data-driven
data-plane systems to achieve better performance in terms of latency
and throughput. The core part of these systems has packet-processing
algorithms running in the data plane to continuously monitor traf-
fic conditions or listen to data-plane signals and quickly respond to
adapt to the network conditions in small timescales (e.g., tens of
nanoseconds).

Though such novel data-driven data-plane systems seem promis-
ing to achieve better performance, they run the risk of a larger attack
surface and hence, may be vulnerable to network attacks not seen
before. For example, a network attacker could potentially exploit
the semantics of the control logic and craft adversarial network in-
puts [16, 26]. Such inputs would directly influence the decisions
made by the systems and can negatively impact the behavior of a
large portion of the traffic, potentially leading to severe performance
degradation. Interestingly, to generate fake data-plane signals attack-
ers do not need specific privilege since many of these data-plane
systems can be tricked by spoofed and manipulated data-plane sig-
nals, or crafted traffic patterns from compromised hosts. To solve this
problem, one may want to authenticate traffic or data-plane signals,
both arriving at line rate. However, the P4 data plane supports a lim-
ited set of operations, with no support for loops and recursions, thus
implying we cannot run sophisticated primitives for cryptography in
the data plane.

In summary, to reap the performance benefits of data-driven data-
plane systems and for such systems to be widely deployed, securing
the systems from adversaries becomes crucial and immediate.

Our goal is to secure data-driven systems from adversarial net-
work inputs. In working towards this goal, we propose a system to
detect whether data-plane systems and associated packet-processing
algorithms are under the influence of adversaries. The key idea is to
detect behaviors that are abnormal when compared to some normal
standard. Specifically, our approach is to (1) precisely understand the
non-adversarial (normal) behavior of a data-plane algorithm written
in P4; (2) monitor the actual behavior at run-time; (3) periodically
compare the actual behavior with the normal behavior, raising alerts
when the actual behavior deviates significantly from the normal be-
havior.
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As an initial step, we identify possible attacks on recently proposed
data-driven systems and explain how an attacker can target specific
system components and perform attacks (details in Section §2). Next,
we propose an anomaly detection system that performs statistical anal-
ysis on packet execution paths in the data plane to detect anomalies.
The key insight of our approach is that the statistics of packet execu-
tion paths in P4 programs can be used to understand non-adversarial
behavior (normal) such that a significant variation of these statistics
at run-time would hint at abnormal behavior or behavior that is most
likely observed if the system is under attack. For example, paths in
P4 program that invoke switch CPU are typically expensive and not
seen often. However, if we suddenly observe too many packets taking
this path, we can consider this abnormal behavior.

The main challenge in implementing our idea is that programmable
data planes are resource-constrained with limited per-packet time
budget (100’s of nano secs), a limited number of per-packet memory
accesses (1-2 per-pipeline stage), and limited storage capabilities
(order of MBs). We carefully design our system to work under these
constraints. To be specific, our system has three main features. First,
our approach relies on packet execution path statistics to understand
the normal packet-processing behavior of a data-plane system. How-
ever, tracking each packet’s execution path in the data plane under the
constraints is challenging. To this end, a recent work, P4track [20],
proposed a technique to track the execution path of every packet
using Ball-Larus encoding and has shown that it works well under
Intel’s barefoot Tofino switch constraints. In this paper, we propose
to build our system on top of this work and integrate it with our ap-
proach to detect malicious packet-processing behaviors (more details
in section §2.2).

Second, it is important to maintain packet execution path statistics
with minimal-to-no impact on packet-processing throughput. To
achieve this, we maintain statistics in a hash table which can be
implemented using stateful registers and can be updated at line-
rate in the data plane. Details about the design choice of the hash
table are given in section §3.2. Third, to detect abnormal behavior,
one has to compare the tracked packet execution path statistics (or
observations) with the expected (or normal) behavior. To do so, we
use Pearson’s chi-squared test [2] to determine whether there is a
significant deviation between the expected behavior and the observed
behavior (more details in section §3.3 and section §3.4).
Contributions. (1) We categorize possible attacks on existing data-
driven data-plane systems built on top of programmable switches.
(2) We design an anomaly detection system that helps to determine
whether data-plane systems are under the influence of adversaries. (3)
We perform preliminary experiments to demonstrate the effectiveness
of our system in detecting anomalies in packet-processing behaviors
of the NetCache [8] data-plane system.

2 ATTACKS ON DATA-DRIVEN DATA PLANE
SYSTEMS

Existing data-driven systems such as HULA [19], Blink [14], Poise [18],
Silkroad [27], and NetCache [8] leverage programmable hardware
capabilities and significantly reduce either control-loop decision
time, end-to-end latency, or telemetry data collection and processing
overheads. To achieve their goals, these systems: (i) monitor net-
work traffic, (ii) send feedback-control signals to control plane agents

and/or adjacent nodes (e.g., switches), and (iii) analyze the signals
either entirely in the data plane or combination of data plane and
control plane, and (iv) take appropriate action (e.g., drop packet, add
rule, reroute traffic, update register, create packet).

For instance, HULA [19], in each time window, listens to periodic
probes carrying path performance metrics, picks the current best path
towards a destination, and forwards traffic on the selected path. The
Blink [14] system keeps track of the number of flows re-transmitting
packets in a particular window on the current path to a destination
prefix. If the number of flows exceeds a certain threshold, traffic is
rerouted to a backup path. NetCache [8] classifies a key as hot if the
key is accessed more than a certain number of times (threshold). The
control plane then installs this key-value pair in the table, so that the
switch would respond to subsequent key requests without having to
visit a storage server, hence reducing latency.

2.1 Threat Model
It is important to identify the type of privileges required to attack data-
plane systems. In this section, we identify who can send adversarial
inputs to attack which parts of the data-plane system.
Attack target. Data-plane systems built on top of programmable
switches respond quickly to data-plane signals. There are two kinds
of signals: (1) messages generated by switch primitives monitoring
incoming traffic; and (2) control packets sent by other switches or
hosts in the network.
The attacker and their privileges. We consider two possible sce-
narios for an attacker to be able to send adversarial inputs — a
compromised host, or a Man in The Middle(MiTM) attacker. For
both types of attackers, we assume they know which packet header
values and the order of packets, would influence the decision mak-
ing in the data-plane system under attack. Thereby the attackers can
trick the system by injecting malicious traffic into the network, or by
manipulating the original control packets, or by creating fake control
packets.

Note, to influence the decision making, the attacker does not
require access to the P4 code, or know the packet-processing behavior,
or access to the switch. The attacker can find the semantics of the
control logic through other means (e.g., by monitoring end-to-end
performance) and then infer the packet header values and their order
to influence the decision making. For instance, in the NetCache
system, the attacker can deduce the threshold for classifying a key as
"hot" by observing the difference in response times before and after
a key becomes hot.

2.2 Possible attacks
In this context, we identify attacks on data-plane systems, especially
those attacks targeting the behavior of a specific system component
that responds to data-plane signals. Table 1 summarizes the possible
attacks on data-driven data-plane systems that we present below:
CPU exhaustion. Computational cost represents the amount of work
to be performed for a particular input (data/control packet). Typically,
not all inputs have the same computational cost — packet-processing
in the data plane is very fast (nano to micro-seconds) and packets
that invoke the control plane (e.g., copy-to-cpu) are processed slowly
(milliseconds to seconds). Hence, it is good practice to invoke the
control plane at larger timescales. An attacker could exploit this



Anomaly Detection in Data Plane Systems using Packet Execution Paths SPIN ’21, August 23, 2021, Virtual Event, USA

Attacks Goal Attacker privileges Data plane systems
CPU exhaustion DDoS Compromised hosts, Compro-

mised storage servers
NetHCF [21], ACL, NAT, Poise [18]

Memory saturation DDoS Compromised hosts Poise [18], Silkroad [27], Net-
Cache [8]

Performance degradation DoS, Poor QoS Compromised hosts, MiTM Blink [14], HULA [19]
Corrupt network stats Evasion (miss attack detection),

Poisoning (mislead learning al-
gorithms)

Compromised hosts Flowradar [22], Lossradar [23], Uni-
vMon [25]

Table 1: Details of possible attacks on data plane systems

and craft inputs exclusively to invoke the control plane continuously,
successfully depleting switch CPU resources.
Memory saturation. The data plane has two types of state: state-
less match-action table rules and stateful registers. These states are
maintained in either SRAM or TCAM or both, where TCAM holds
a few thousand rules [12] and the SRAM size is in the order of MBs
(50MB-100MB) [27]. In some systems, control-plane agents contin-
uously update match-action rules whenever there is a signal from
the data plane. Consider, for example, the NetCache [8] system’s key
classification mentioned above. An adversary can take advantage of
this process and craft traffic with an objective to access distinct keys,
each, for more than its threshold. This can eventually lead to rule
installation for too many keys, discarding legitimate key requests due
to lack of space, thereby increasing end-to-end latency. Similarly,
stateful registers are usually pre-allocated and blocks of registers are
assigned at run-time whenever certain conditions are met (e.g., allo-
cate blocks on a new flow arrival). An adversary can inject spoofed
flows frequently with the goal to saturate stateful registers, thereby
leading to a memory saturation attack. The consequences of memory
saturation are unpredictable – the switch may behave abnormally
(e.g., drop incoming packets), or, the attacker may successfully evade
defenders.
Performance degradation. To quickly handle dynamic network
events (e.g., congestion, link/switch failure), some systems take de-
cisions immediately in the data plane before the control plane re-
sponds. For example, HULA [19] listens to network feedback carried
in probes and quickly responds with decisions (e.g., re-route traffic)
to avoid performance degradation. However, in such cases, an ad-
versary could potentially exploit the semantics of the control logic
to craft network inputs (e.g., modify/delay probes) and influence
decisions in the data plane. This will potentially lead to negatively
impacting the behavior of a large portion of the traffic and hence
degrading aggregate network performance.
Corrupt network statistics. Network management tasks such as
traffic engineering, security, and accounting heavily rely on network
telemetry data (e.g., avg, min, count estimations) generated by data-
plane monitoring primitives. To perform monitoring at line rate,
compact data structures like bloom filter and its variants (e.g., count-
ing bloom filters) are commonly used because of space efficiency
and low per-packet computation cost. Further, to keep a low false
positives rate, using multiple bloom filters indexed by several hash
functions (say 𝑘) has become common practice. For instance, to
check if a packet belongs to an old flow, the packet’s 5-tuple flow
key is hashed 𝑘 times and if entries at all 𝑘 locations are set to 1,
then the packet is marked as an old flow. Otherwise, the packet is
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Figure 1: System workflow
marked as a new flow. Previous studies on attacking bloom filters
[13] have shown that an adversary can pollute bloom filters by gener-
ating traffic with an objective to increase the number of 1’s. By doing
so, the false positives rate increases significantly, thus misleading
learning algorithms and successfully evading from being detected.
Another possible attempt is to make membership queries expensive
by generating traffic in such a way that flow keys evaluate to 0 for the
last hash function and 1 for others – thus increasing query execution
time.

3 DESIGN

The main objective of this work is to detect at run-time if a data-
plane system is under attack. As a first step, we present an anomaly
detection system, which performs statistical analysis on the packet
execution path distribution in the switch data plane.

Figure 1 shows our approach to detect anomalies. It can broadly
be divided into three phases:

• Model expected behavior: Our system monitors traffic under
normal conditions where an encoded p4 program running in
the data plane tracks and maintains packet execution path
statistics. The control plane periodically collects statistics and
constructs a packet execution path distribution, which will be
the expected distribution.

• Capture observed behavior: At run time, we capture packet
execution path statistics for each time window, using which,
the control plane constructs a packet execution path distribu-
tion – the observed distribution.

• Measure deviation: We calculate the deviation between the
expected and observed distributions using a statistical testing
technique called the chi-square test and raise alerts if signifi-
cant deviation is observed.
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Figure 2: Tracking packet execution path using Ball-Larus algorithm

In the following sections, we provide details related to (1) track-
ing packet execution path, (2) maintaining path statistics, and (3)
measuring deviation using the chi-square test method.

3.1 Tracking packet execution path
A packet might take any path in a P4 program. To track every path –
the tables applied and the actions executed – we need to augment the
original p4 program such that per-packet state like the Packet Header
Vector (PHV) is updated as the packet travels. However, since the
PHV is a scarce resource, the path encoding technique should operate
under the resource constraints of programmable data planes. Recently,
p4track [20] has shown that the Ball-Larus encoding technique [10],
is a promising fit for tracking packet execution paths in P4 programs.
This is because P4 programs are loop-free and the encoding does not
require sophisticated updates, and the addition operation on the path
variable is sufficient. We use this technique for tracking paths and
construct the expected and observed distributions atop this technique.

We briefly present the core idea of the Ball-Larus encoding tech-
nique here.

Since P4 programs are loop-free, the control flow graph (CFG) of
a P4 program is a Directed Acyclic Graph (DAG) where each node
represents a program statement such as a table, action, or conditional.
The Ball-Larus encoding algorithm performs reverse topological
ordering of the DAG and assigns a label to each edge such that, as
a given input packet transitions from one program statement to the
next, the packet’s path variable maintained in the PHV is added to
the associated edge label. Finally, at the end of the DAG (or program)
processing, the path variable value uniquely represents the path that
the packet has taken in the program. Thus, if there are 𝑁 possible
paths, the path variable after program processing has a unique value
between 0 to 𝑁 − 1.
Running example: Figure 2(a) shows the CFG of a NetCache [8]
P4 program. It first checks whether it has received a valid NetCache
query packet (node 𝐴 in the CFG). If yes, it then checks whether
the query response is in the cache by applying read_query table
(node 𝐵). If there is a hit, the response packet is generated and sent
to the sender (node 𝐶 and node 𝐷). Otherwise, it checks whether the

query has been seen many times before. If yes, the query becomes hot
and a signal is sent to the local switch CPU, which in turn installs the
response in the cache (node 𝐸 and node 𝐹 ). Otherwise, the query is
sent to the destination server (node 𝐺). Finally, the exit action marks
the end of the read query in the CFG.

When we run the Ball-Larus (BL) algorithm on the CFG, it assigns
labels 1, 1, 3, 4 to edges 𝐸–>𝐺 ,𝐶–>𝐸, 𝐵–>𝐻 and𝐴–>𝐻 , respectively.
As a packet traverses an edge, the associated edge label is added to
the per-packet path variable 𝑉 . The CFG has 5 different paths from
the root node (𝐴) to leaf node (node 𝐻 ). When a program completes
packet processing, the value 𝑉 must be in the range of 0 to 4 as
depicted in the table in Figure 2(a).
Multi-variable Ball-Larus encoding. However, a naively adapted
Ball-Larus encoding can have significant overhead in terms of action
complexity and the number of pipeline stages. More specifically, for
large P4 programs such as switch.p4 [7] the path variable size
can go as large as a few hundred bits, making integer arithmetic
at line rate a challenge. Another concern is that updating the same
path variable by multiple tables would force the compiler to put the
tables across multiples stages, which would otherwise be mapped to
the same stage: thus increasing the number of stages. P4track [20]
handles both these challenges by using multiple variables for Ball-
Larus encoding (MVBL). The key idea is to carefully partition the
original DAG and assign a variable to each partition (i.e., sub-DAG),
and track the packet execution path separately. By doing so, since
each sub-DAG has fewer paths compared to the original DAG, the
path variable size would stay within the limits of the arithmetic
operands. Moreover, it allocates different path variables to the tables
mapped to the same stage so that they co-exist in the same stage after
Ball-Larus encoding.

3.2 Maintain packet execution path statistics
We use a hash table to maintain per-path statistics. The path variable
value (𝑉 ) is hashed and the hash value is used as a key to lookup
an entry in the hash table. If the key is present, we increment the
existing counter. Otherwise, we allocate and initialize an entry with
the key. We leverage stateful registers in SRAM to store and update
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hash table entries at line rate. One might argue that the number of
paths would explode in a large P4 program, thus requiring large
memory to keep the hash collision probability low. However, in prac-
tice, packets traverse a small subset of all possible paths – thus, the
memory required is reasonably low compared to the SRAM available
in the switches [27]. In our experiments, we observe that packets in
Netcache.p4 [8] traverse around 10 paths out of 600 possible paths,
and it is 60 out of 108 in Blink.p4 [14]. We also observed that the
number of paths across different windows remains the same most
of the time and if it changes, the percentage change is very small.
So, given a hash table of size 500KB, with 100 keys, the expected
number of collisions is 0.077 which is in the generally recommended
limits of 0.1% of the number of keys (i.e., 100).

Moreover, our control plane agent resets stale entries whose counter
value is the same in two subsequent windows; this clean-up process
further reduces the collision rate. If MVBL encoding is in place, for
multiple path variables, one for each sub-DAG, it requires additional
memory to maintain statistics such that the collision rate will be
under the limits. One may also consider the count-min sketch data
structure [3] to achieve an acceptable trade-off between memory
and accuracy at the cost of packet-processing complexity. We will
explore this alternative data structure in our future work.

3.3 Model expected behavior
To model expected behavior, we deploy P4 program annotated with
Ball-Larus algorithm and hash table on the switch, and collect packet
execution path distribution of real traffic over a period of time (train-
ing phase). The distribution captures number of packets on each
execution path in the P4 program. We build expected distribution,
say E, from periodically collected per-path statistics maintained in
the hash table in the data plane. Formally, assume there are 𝐾 paths
in a given time window 𝑤𝑖 , the expected distribution 𝐸𝑤𝑖

for the
current window𝑤𝑖 is defined as:

𝐸𝑤𝑖
= (𝐸𝑤𝑖

(1), 𝐸𝑤𝑖
(2), 𝐸𝑤𝑖

(3), ...𝐸𝑤𝑖
(𝑘)) (1)

where 𝐸𝑤𝑖
(1), 𝐸𝑤𝑖

(2), 𝐸𝑤𝑖
(3) ... 𝐸𝑤𝑖

(𝑘) denote frequencies corre-
sponding to paths 1, 2 ... 𝑘, respectively. Let 𝑆𝑖 be the total packets
seen in this window, given by

𝑆𝑖 =

𝑘∑
𝑗=1

𝐸𝑤𝑖
( 𝑗) (2)

After capturing 𝐸𝑤 and S for each window, we model the probabil-
ity corresponding to each path in order to define the NULL hypothesis.
We define NULL hypothesis in terms of set 𝑀 given by

𝑀 = (𝑝1, 𝑝2, 𝑝3 ...𝑝𝑘 ) (3)

where 𝑝1, 𝑝2, 𝑝3 ... 𝑝𝑘 denotes probability corresponding to paths
1, 2 ... 𝑘 respectively. To be specific, if there are 𝑛 windows, the
probability 𝑝 𝑗 corresponding to path 𝑗 is given by,

𝑝 𝑗 =

∑𝑛
𝑖=1 (𝐸𝑤𝑖

( 𝑗))∑𝑛
𝑖=1 (𝑆𝑖 )

(4)

In summary, we represent expected behavior in terms of 𝑀 and
use it as a reference to validate the observed distribution, which we
discuss next.

3.4 Validate observed with expected
Given a benchmark for expected traffic distribution, we ought to
identify whether observed traffic falls outside a regular pattern. To
do so, after the training phase, we collect per-path traffic statistics
maintained in the hash table and compare the observed distribution
with 𝑀 . Formally, for a given window𝑤𝑖 , observed distribution 𝑂 is
defined as:

𝑂𝑤𝑖
= (𝑂𝑤𝑖

(1),𝑂𝑤𝑖
(2),𝑂𝑤𝑖

(3), ...𝑂𝑤𝑖
(𝐿)) (5)

where𝑂𝑤𝑖
(1),𝑂𝑤𝑖

(2), ...𝑂𝑤𝑖
(𝐿) denote number of packets observed

on 𝐿 paths. Let 𝑆𝑖 be the total packets seen in𝑤𝑖 , given by the equa-
tion:

𝑆𝑖 =

𝐿∑
𝑗=1

𝑂𝑤𝑖
( 𝑗) (6)

We measure deviation between observed distribution and expected
distribution using a chi-squared test [2]. A chi-squared test (𝜒2) for
independence compares two frequency distributions (𝑀 and 𝑂) to
see if they are related. To be specific, we define (𝜒2) for window 𝑖 as:

𝜒2𝑤𝑖
=

𝐾∑
𝑗=1

(𝐸𝑤𝑖
( 𝑗) −𝑂𝑤𝑖

( 𝑗))2

𝐸𝑤𝑖
( 𝑗) (7)

where expected count of path 𝑗 , 𝐸𝑤𝑖
( 𝑗) is defined as:

𝐸𝑤𝑖
( 𝑗) = 𝑝 𝑗 ∗ 𝑆𝑖 (8)

A small chi-square value means that the observed distribution
data fits expected data extremely well. On the other hand, a large
chi-square value means that the observed data deviates significantly
from the expected data.

It is possible that the set of observed paths (𝐿) vary from the
expected set of paths (𝐾) in 𝑀 . To handle this, we consider two
scenarios: 𝐿 ⊆ 𝐾 and 𝐿 ⊈ 𝐾 . When 𝐿 ⊆ 𝐾 the observed packet count
is zero for those paths in 𝐾-𝐿 set. On the other hand, when 𝐿 ⊈ 𝐾 we
add a small threshold 𝑡𝑖 to the expected set 𝐿-𝐾 for the chi-squared
value to be infinite. We report that the observed distribution deviates
from the expected when the standard chi-square value is improbably
large according to the chi-squared p-value table [1].

4 PRELIMINARY EXPERIMENTS

Setup. To demonstrate the feasibility of our idea, we conduct an
initial experiment on the NetCache [8] P4 program. We construct the
NetCache.p4 program CFG from .json and .dot files generated by the
p4c compiler [5]. Next, we run the Ball-Larus algorithm on the CFG
and annotate actions and conditional statements in the original P4
program. Currently, the P4 program is annotated manually. We can
automate this step by parsing the P4 program line by line and append
the action and condition blocks with code that updates BL variable.
Finally, we add a hash table at the end of packet processing and
the annotated P4 program is deployed on the P4 switch. Our experi-
ments were conducted in Mininet v2.3.0 with one P4 switch, eight
key-value storage hosts, one client requesting keys, one controller
updating the switch cache with hotkeys, and a collector which reads
packet execution path statistics and measure deviation. We run the
experiment multiple times using a bash script with each experiment
containing around 40000 queries, taking 3 minutes to run. The code
for BL encoding, collection, and validation is written in Python.
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(a) With normal traffic

Attack Start

Attack End

(b) With normal and attack traffic

Figure 3: Chi-square test before and during the attack
Memory saturation attack. As mentioned previously, the NetCache
system classifies a key as "hot" if the key is requested beyond a
certain threshold. Once the attacker discovers the threshold, he/she
can craft traffic with distinct hot keys to cause: (1) installation of
unwanted keys in cache; and (2) eviction of legitimate keys when
the cache is full, thus increasing response time for legitimate traffic.
Experiments. First, we send normal traffic, collect packet execution
path counters for multiple windows, and model expected distribution
as described in §3.3. The normal traffic is following Zipf distribution
on key requests where the frequency of a key request is inversely
proportional to its rank such that 10% of the keys account for 60-
90% of queries [9]. After building the expected distribution model,
we inject attack traffic, collect path statistics, and perform the chi-
squared test. Note that the keys in the attack traffic are randomly
generated with the intent to create more hotkeys. The cache size is
set to 8 𝐾𝐵.
Results. To interpret the chi-square test results, we compare the actual
chi-squared values with the pre-set chi-squared threshold. The dashed
red line in Figure 3(a) and Figure 3(b) shows that the chi-squared
p-value is set to 21 — this aligns with the standard threshold [1]
when the number of classes (or paths observed) is less than 11. By
comparison, if the actual/observed values are below the given chi-
square threshold, it denotes that the system behavior is as expected.
If the actual/observed values rise above the threshold value, we can
conclude that the system is displaying abnormal behavior.

The dotted green line in Figure 3(a) indicates that when there is
no attack traffic the chi-squared value is below the threshold. When
the system is under attack, as depicted in Figure 3(b), the chi-squared
value increases and saturates; here we observe eviction happens to
accommodate space for new hotkeys. This experiment shows that
our anomaly detection approach is able to detect abnormal behavior
in this system.

Figure 4: Mean Chi-Squared Value Above Threshold

Figure 4 summarizes the results of experiments carried out over
multiple runs for NetCache. The X-axis represents the percentage of

attack queries and the Y-axis depicts how far the actual chi-squared
value is from the threshold chi-squared value. The difference between
the actual and the threshold is averaged over multiple runs. We vary
the percentage of attack queries from 0 to 50 and record the mean
value for each scenario. When there are no attack queries (i.e., 0
attack percentage), the value turns out to be negative, as depicted
by the green bar plot in Figure 4, denoting that there was no attack.
When the percentage of attack queries increases, we see a positive
mean value, depicted by the blue bar plots here, which indicate our
system is successfully able to detect attacks even when the attack
traffic percentage is low (e.g., 10).

5 RELATED WORK

A recent work [16, 17] proposed a probabilistic program profiler that
uses symbolic execution with model counting to analyze program
behaviors for adversarial testing. In contrast, we model path execution
probability distribution at run-time from real traces and use the model
to check deviation. We believe our work nicely complements offline
profilers as it could miss corner cases during testing or expensive to
explore all possible paths for large programs in useful time. Another
line of work [24, 28, 29] explores automatic verification of various
properties about P4 programs using techniques such as static analysis
or symbolic execution. However, these tools still operate at the level
of the P4 program. That is, they can verify if the software logic
is bug-free for a specific set of bugs, but cannot find whether the
p4 programs are under the influence of attackers at run-time. Our
work is inspired by the security challenges presented in self-driving
networks using programmable data planes [26].

6 SUMMARY AND FUTURE WORK.

Our preliminary experiments indicate our methodology is able to
detect abnormal behavior due to a memory saturation attack on the
NetCache system. As part of ongoing work, we plan to: (1) im-
prove attacker model, especially by distinguishing between data-
plane systems designed for data centers and the Internet; (2) val-
idate our detection technique on a wide range of data-plane sys-
tems [14, 18, 19, 21, 22, 27] as shown in Table 1; (3) avoid false
alerts through continuous learning and adapt our models to the new
normal; (4) study attack surface of the proposed system and make the
design robust to the possible attacks; (5) study whether an adaptive
attacker able to evade detection by generating traffic strategically;
(6) handle non-stationary normal events (e.g., traffic spikes, system-
specific traffic abnormalities); and (7) evaluate the system using real
traces and associated overhead in terms of resources consumed.
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