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Distributed Generalized Dynamic Barrier Synchronization

Shivali Agarwal Saurabh Joshi R.K. Shyamasundar

Abstract

Barrier synchronization is widely used in shared-memory parallel programs to synchronize
between phases of data-parallel algorithms. With proliferation of many-core processors, barrier
synchronization has been adapted for higher level language abstractions in new languages such
as X10 wherein the processes participating in barrier synchronization are not known a priori,
and the processes in distinct “places” don’t share memory. Thus, the challenge here is to not
only achieve barrier synchronization in a distributed setting without any centralized controller,
but also to deal with dynamic nature of such a synchronization as processes are free to join
and drop out at any synchronization phase. In this paper, we describe a solution for the
generalized distributed barrier synchronization wherein processes can dynamically join or drop
out of barrier synchronization; that is, participating processes are not known a priori. Using the
policy of permitting a process to join only in the beginning of each phase, we arrive at a solution
that ensures (i) Progress: a process executing phase k will enter phase k + 1 unless it wants to
drop out of synchronization (assuming the phase execution of the processes terminate), and (ii)
Starvation Freedom: a new process that wants to join a phase synchronization group that has
already started, does so in a finite number of phases. The correctness of the solution is formally
established. From the perspective of a global observer, our protocol guarantees a bound of at
most two phases from the phase a process had registered it’s intention to join. We show how
the testing by each of the processes with all the other processes can be short circuited leading
to efficient synchronization. The above protocol is further generalized to multiple groups of
processes (possibly non-disjoint) engaged in barrier synchronization.

1 Introduction

Synchronization and coordination play an important role in parallel computation. Language con-
structs for efficient coordination of computation on shared memory multi-processors, and multi-core
processors are of growing interest. There are a plethora of language constructs used for realizing
mutual exclusion, point-to-point synchronization, termination detection, collective barrier synchro-
nization etc. Barrier [8] is one of the important busy-wait primitives used to ensure that none of
the processes proceed beyond a particular point in a computation until all have arrived at that
point. A software implementation of the barrier using shared variables is also referred to as phase
synchronization [1, 7]. The issues of remote references while realizing barriers has been treated
exhaustively in the seminal work [3]. Barrier synchronization protocols, either centralized and dis-
tributed, have been proposed earlier for the case when processes that have to synchronize are given
a priori [7][5][14][6][15]. With the proliferation of many-core processors, barrier synchronization
has been adapted for higher level language abstractions in new distributed shared memory based
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languages such as X10 [21] wherein the processes participating in barrier synchronization are not
known a priori. Some of the recent works that address dynamic number of processes for barrier
synchronization are [25][23][26]. More details on existing work on barrier synchronization can be
found in section 6. Surprisingly, a distributed solution to the phase synchronization problem in such
dynamic environments has not yet been proposed. In this paper, we describe a distributed solution
to the problem of barrier synchronization used as an underlying synchronization mechanism for
achieving phase synchronization where processes are dynamically created (in the context of nested
parallelism). The challenge arises in arriving at the common knowledge of the processes that want
to participate in phase synchronization for every phase in a de-centralized manner such that there
are some guarantees on the progress and starvation freedom properties of the processes in addition
to the basic correctness property.

1.1 Phase Synchronization Problem

The problem of phase synchronization [7] is described below:
Consider a set of asynchronous processes where each process executes a sequence of phases;

a process begins its next phase only upon completion of its previous phase (for the moment let
us ignore the constitution of a phase). The problem is to design a synchronization scheme which
guarantees the following properties:

1. No process begins it’s (k+1)th phase until all processes have completed their kth phase, k ≥ 0.

2. No process will be permanently blocked from executing it’s (k + 1)th phase if all processes
have completed their kth phase, k ≥ 0.

The set of processes that have to synchronize can be either given a priori which remains unchanged
or the set can be a dynamic set in which new processes may join as and when they want to phase
synchronize or existing processes may drop out of phase synchronization.

In this paper, we describe a distributed solution for the dynamic barrier synchronization in
the context of phase synchronization, wherein processes can dynamically join or drop out of phase
synchronization. Using the policy of permitting a process to join in a phase subsequent to the
phase of registration, we arrive at a solution that ensures

(i) Progress: a process executing phase k will enter phase k + 1 unless it wants to drop out of
synchronization (assuming the phase execution of the processes terminate), and

(ii) Starvation Freedom: a new process that wants to join a phase synchronization group that has
already started, does so in a finite number of phases. Our protocol establishes a bound of at
most two phases from the phase it registered it’s intention to join1 the phase synchronization.
The lower bound is one phase.

The correctness of the solution is formally established. The dynamic barrier synchronization algo-
rithm is further generalized to cater to groups of barrier synchronization processes.

1Starvation Freedom is guaranteed only for processes that are registered
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< Program > ::=< async Proc > || < async Proc >
< Proc > ::=< clockDec >;< stmtseq > | clocked < clock-id >< stmtseq >
< clockDec > ::= new clock c1, c2..
< stmtseq > ::=< basic-stmt > | < basic-stmt >< stmtseq >
< basic-stmt > ::= async Proc|atomic stmt|seq stmt|c.register|c.drop|next
clock-id ::= c1, c2, ...

Figure 1: Abstract Clock Language for Barrier Synchronization

2 Barrier synchronization with dynamic set of processes

We consider a distributed system which gets initialized with a non-empty set of processes. New
processes can join the system at will and existing processes may drop out of the system when they
are done with their work. They carry out individual computations in phases and synchronize with
each other at the end of each phase. Since it is a distributed system with no centralized control
and no a priori knowledge of number of processes in the system, each process has to dynamically
discover the new processes that have joined the system in such a manner that the new process can
start synchronizing with them in finite amount of time. The distributed barrier synchronization
protocol described below deals with this issue of including new processes in the ongoing phase
synchronization in a manner that progress of existing as well as newly joined processes is ensured.
It also handles the processes that drop out of the system so that existing processes know that they
do not have to wait on these for commencing the next phase.

Note that there is no a priori limit on the number of processes. The abstract linguistic constructs
for registration and synchronization of processes is described in the following.

2.1 Abstract Language

We base our abstract language for the barrier synchronization protocol on X10. The relevant syntax
is shown in figure 1 and explained below:

• Asynchronous activities: The keyword to denote asynchronous processes is async. The async
is used with an optional place expression and a mandatory code block. A process that creates
another process is said to be the parent of the process it creates.

• Clock synchronization: Special variables of type clock are used for barrier synchronization
of processes. A clock corresponds to the notion of a barrier. A set of processes registered with a
clock synchronize with each other w.r.t. that clock. A barrier synchronization point in a process
is denoted by next. If a process is registered on multiple clocks, then next denotes synchronization
on all of those. This makes the barrier synchronization deadlock-free. The abstraction of phase
synchronization through clocks enables to form groups of processes such that groups can merge or
disjoin dynamically for synchronization. Some important points regarding dynamic joining rule for
phase synchronization are:

• A process registered on clock c, can create a child process synchronizing on c via async clocked
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c {body}. The child process joins the phase synchronization in phase k + 1, if the parent is in
phase k while executing async.

• A process can register with a clock c using c.register. It will join the phase synchronization
from phase k + 1 or k + 2 if the clock is in phase k at the time of registration.

Some important points regarding dropping out of phase synchronization are:
- A process that drops in phase k is dropped out in the same phase and is not allowed to create
child processes that want to join phase synchronization in that phase. Note that this does not
restrict the expressiveness of the language in any way and ensures a clean way of dropping out.
- A process that registers after dropping loses the information of parent and is treated as a process
whose parent is not clocked on c.
- An implicit c.drop is assumed when a process registered on clock c terminates.

We now provide a solution in the form of a protocol for distributed dynamic barrier synchro-
nization problem that provably obeys the above mentioned dynamic joining rules.

3 Distributed barrier synchronization solution

The distributed barrier synchronization protocol for a single clock is given in figure 2. The figures
respectively describe the protocol for barrier operations like initialization, synchronization and
drop. The notations used in the solution are described below.
Notation:
- We denote ith process by Ai (also referred as process i).
- Phases are tracked in terms of k − 1, k, k + 1, · · · .
- We use the guarded command notation [2] for describing our algorithm as it is easy to capture
interleaving execution and termination in a structured manner. The main commands are explained
in appendix in brief.
Assumption: The processes do not have random failures and will always call c.drop if they want
to leave the phase synchronization.

3.1 Correspondance between protocol steps and clock operations

The correspondence of the clock operations with the protocol operations is given below:

• new clock c: Creation of a clock(barrier) corresponds to creation of a special process Ac

that executes as follows where the code blocks INIT c, SYNC and CONSOLIDATE are shown in
figure 2.

INIT_c;
while (true) {

SYNC;
CONSOLIDATE;

}
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Note on Ac: It is a special process that exists till the program terminates. It acts like a
point of contact for processes in case of explicit registration through c.register as seen below
without introducing any centralized control.

• next: A process Ai already in phase synchronization performs a next for barrier synchro-
nization. A next corresponds to:

SYNC; CONSOLIDATE;

• Registration through clocked: A process Ai can either register through clocked at time of
creation in which case it gets into the list Aj .registered of its parent process, Aj . In this case,
Ai joins from next phase. The specific code that gets executed in the parent for a clocked
process is:

INIT_i;
A_j.registered:=A_j.registered+A_i;

The code that gets executed in Ai is:

while (!A_i.proceed);

• Registration through c.register: If Ai registers like this, then it may join phase synchro-
nization within atmost next two phases. Following code gets executed in Ai:

INIT_i;
A_c.registered:=A_c.registered+A_i;
while (!A_i.proceed);

• c.drop : Process Ai drops out of phase synchronization through c.drop (see DROP in fig.
2). The code that gets executed is:

DROP;

Note: 1) Though we assume Ac to exist throughout the program execution, our algorithm is robust
with respect to graceful termination of Ac, that is, it terminates after completing CONSOLIDATE and
there are no processes in Ac.registered upon consolidation. The only impact on phase synchro-
nization being that no new processes can register through c.register. 2) The assignments are done
atomically.

3.2 How the Protocol Works

The solution achieves phase synchronization by ensuring that the set of processes that enter a
phase is a common knowledge to all the processes. Attaining common knowledge of the existence
of new processes and the non-existence of dropped processes in every phase is the non-trivial part
of the phase synchronization protocol in a dynamic environment. The machinery built to solve this
problem is shown in figures 2 and described below in detail.
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Protocol for Process i
[Ac]:: (* Initialization of clock process *)
INIT c: Ac.executing, Ac.next, Ac.Iconcurrent, Ac.registered, Ac.proceed, Ac.drop

:= 0, 1, Ac, ∅, true, false;
[Ai]:: (* Initialization of i that performs a registration *)
INIT i: Ai.proceed := false;
SYNC : (*CHECK COMPLETION of Ai.executing by other members*)

Ai.newsynchproc := Ai.registered;
Ai.newIconcurrent := Ai.newsynchproc + Ai;
Ai.next := Ai.next + 1; Ai.checklist := ∅;
do

Ai.Iconcurrent 6= ∅ ∧ Aj ∈ Ai.Iconcurrent∧ i 6= j ∧
Ai.next ≤ Aj .next →
Ai.Iconcurrent := Ai.Iconcurrent − {Aj};
Ai.newIconcurrent := Ai.newIconcurrent + Aj .newsynchproc +;

{Aj}; Ai.checklist := Ai.checklist + Aj

[] Ai.Iconcurrent 6= ∅ ∧ Aj .drop
→ Ai.Iconcurrent := Ai.Iconcurrent − {Aj};

[] Ai.Iconcurrent 6= ∅ ∧ Aj ∈ Ai.Iconcurrent ∧
Ai.next > Aj .next (* no need to check i 6= j *) → skip;

od;

Ai.executing := Ai.executing + 1; (* Set the current phase *)

do (* Check for completion of phase in other processes *)

Ai.checklist 6= ∅ ∧ j ∈ Ai.checklist ∧
Ai.executing == Aj .executing
→ Ai.checklist := Ai.checklist − {Aj}

od;

CONSOLIDATE: (* CONSOLIDATE processes for the next phase *)
Ai.Iconcurrent := Ai.newIconcurrent;
Ai.registered := Ai.registered − Ai.newsynchproc;
for all j ∈ Ai.newsynchproc do

Aj .executing, Aj .next, Aj .Iconcurrent, Aj .registered, Aj .drop
:= Ai.executing, Ai.next, Ai.Iconcurrent, ∅, false;
Aj .proceed := true;

DROP : (* Code when Process Ai calls c.drop*)
Ai.proceed := false;
Ai.drop := true;

Figure 2: Action of processes in phase synchronization
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Protocol Variables: Ai.Iconcurrent denotes the set of processes that Ai is synchronizing with
in a phase. This set may shrink or expand after each phase depending on if an existing process
drops or a new process joins respectively. The variable Ai.newsynchproc is assigned to the set that
process Ai wants the other processes to include for synchronization from next phase onwards. The
variable Ai.newIconcurrent is used to accumulate the processes that will form Ai.Iconcurrent in
next phase. Ai.executing denotes the current phase of Ai and Ai.next denotes the next phase that
the process will move to.

INIT c: This initializes the special clock process Ac that is started at the creation of a clock
c. Note that the clock process is initialized to itself for the set of initial processes that it has to
synchronize with. Ac.proceed is set to true to start the synchronization.

INIT i: When a process registers with a clock, Ai.proceed is set to false. The newly registered
process waits for Ai.proceed to be made true which is done in CONSOLIDATE block of the process
that contains Ai in its registered set. Rest of the variables are also set properly in this CONSOLIDATE
block. In the following, we explain the protocol for SYNC and CONSOLIDATE.

SYNC: This is the barrier synchronization stage of a process and performs the following main
functions: 1) checks if all the processes in the phase are ready to move to next phase; Ai.next is
used to denote the completion of phase and check for others in the phase, 2) informs the other
processes about the new processes that have to join from next phase, 3) establishes if the processes
have exchanged the relevant information so that it can consolidate the information required for the
execution of next phase.
The new processes that are registered with Ai form the set Ai.newsynchproc. This step is required
to capture the local snapshot. Note that for processes other than clock process, Ai.registered will
be same as Ai.newsynhproc. However for the special clock process Ac, Ac.registered may keep on
changing during the SYNC execution. Therefore, we need to take a snapshot so that consistent set
of processes that have to be included from the next phase can be conveyed to other processes that
are present in the synhcronization.
The increment of Ai.next denotes that effectively the process has completed the phase and is
preparing to move to the next phase. Note that after this operation the difference between Ai.next
and Ai.executing becomes 2 denoting the transition. The second part of SYNC is a do-od loop that
forms the crux of barrier synchronization. There are three guarded commands in this loop which
are explained below.

1. The first guarded command checks if there exists a process j in Ai.Iconcurrent that has also
reached barrier synchronization. If the value of Aj .next is greater or equal to Ai.next, then
it implies that Aj has also reached the barrier point. If this guard is evaluated true, then
that process is removed from Ai.Iconcurrent and the new processes that registered with Aj

are added to the set Ai.newIconcurrent.

2. The second guard checks if any process in Ai.Iconcurrent has dropped out of synchronization
and accordingly the set Ai.newIconcurrent is updated.

3. The third guard is true if the process j has not yet reached the barrier synchronization point.
The associated statement with this guard is a no-op. It is this statement which forms the
waiting part for barrier synchronization.
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By the end of this loop, Ai.Iconcurrent shall only contain Ai. The current phase denoted by
Ai.executing is incremented to denote that process can start with the next phase. However, to
ensure that the local snapshot captured in Ai.newsynchproc is properly conveyed to the other
processes participating in phase synchronization, another do-od loop is executed that checks if
processes have indeed moved to next phase by incrementing Ai.executing.

CONSOLIDATE: After ensuring that Ai has synchronized on the barrier, a final round of con-
solidation is performed to prepare Ai for executing in next phase. This phase consolidation is
described under label CONSOLIDATE. The set of processes that Ai needs to phase synchronize are
in Ai.newIconcurrent, therefore, Ai.Iconcurrent is assigned to Ai.newIconcurrent. All the new
processes that will join from Ai.executing are signalled to proceed after initializing them properly.
The set Ai.registered is updated to ensure that it has only those new processes that got regis-
tered after the value of Ai.registered was last read in SYNC. This is possible because of the explicit
registration that is allowed through the special clock process.

DROP: Ai.drop is set to true so that the guarded command in SYNC can become true appropriately.
The restriction posed on a drop command ensures that Ai.registered will be empty and thus the
starvation freedom guarantee is preserved.

An illustrative description of the protocol is provided in the appendix.

4 Correctness of the Solution

In this section, we provide a proof in semi-formal way in the style of [1]. The proof obligations for
synchronization and progress are given below. The symbol ‘7→’ denotes leads to.

• Synchronization

We need to show that the postcondition of SYNC;CONSOLIDATE; (corresponding to barrier
synchronization) for processes that have proceed set to true is :
{∀i, j((Ai.proceed = true ∧Aj .proceed = true) ⇒ Ai.executing = Aj .executing)}

• Progress
Property 1: The progress for processes already in phase synchronization is given by (k is
used to denote current phase) the following property which says that if all the processes have
completed phase k, then each of the processes move to a phase greater than k if they do not
drop out.
P1: {∀i(Ai.drop = false ∧ ∀j(Aj .drop = false ⇒ Aj .executing ≥ k) 7→ (Ai.executing ≥ k + 1))}
Property 2: The progress for new processes that want to join the phase synchronization is
given by the following property which says that a process that gets registered with a process
involved in phase synchronization will also join the phase synchronization.
P2: {∃i((Ai.proceed = false ∧ ∃j(i ∈ Aj .registered)) 7→ Ai.proceed = true)}

The proof details can be found in Appendix C.
Complexity Analysis: The protocol in it’s simplest form has a remote message complexity of
O(n2) where n is the upper bound on the number of processes that can participate in the barrier
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synchronization in any phase. This bound can be improved in practice by optimizing the testing
of the completion of a phase by each of the participating processes. The optimization is briefly
explained in the following. When a process Ai checks for completion of phase in other process,
say Aj , and it finds that Ai.executing < Aj .executing, then it can actually come out of the do-
od loop by copying Aj .newIconcurrent that has the complete information about the processes
participating in next phase. This optimization can have the best case of O(n) messages and is very
straightforward to embed in the proposed protocol. Note that in any case, atleast n messages are
always required to propagate the information.

5 Generalization: Multi-Clock Phase Synchronization

In this section, we outline the generalization of the distributed dynamic barrier synchronization for
multiple clocks.
1) There is a special clock process for each clock.
2) The processes maintain protocol variables for each of the clocks that they register with.
3) A process can register with multiple clocks through C.register, where C denotes a set of clocks, as
the first operation before starting with phase synchronized computation. The notation C.register
denotes that for all clocks c such that c∈C, perform c.register. The corresponding code is:

for each c in C
INIT_i_c;
A_c.registered:=A_c.registered+A_i;
while (!A_i_c.proceed);

Some important restrictions to avoid deadlock scenarios are:
i) C.register, when C contains more than one clock, can only be done by the process that creates
the clocks contained in C.
ii) If a process wants to register with a single clock c that is in use for phase synchronization by
other processes, it will have to drop all it’s clocks and then it can use c.register to synchronize on
the desired clock. Note that the clock c need not be re-created.
iii) Subsequent child processes should use clocked to register with any subset of the multiple clocks
that the parent is registered with.
This combined with (iv) below avoids the deadlock scenarios of the likes of mobile barriers [25].
iv) For synchronization, the process increments the value of Ai.next for each registered clock, then
executes the guarded loop for each of the clocks before it can move to CONSOLIDATE stage. The
SYNC part of the protocol for multi-clock is very similar to single-clock except for an extra loop to
run the guarded command loop for each of the clocks.

A process clocked on multiple clocks results in synchronization of all the processes that are
registered with these clocks. This is evident from the second do-od loop in SYNC part of the barrier
synchronization protocol. For example, if a process A1 is synchronizing on c1, A2 on c1 and c2
and A3 on c2, then A1 and A3 also get synchronized as long as A2 does not drop one or both of
the clocks. These clocks can be thus thought of as forming a group. Let the processes that are
clocked on multiple clocks and result in a group formation of clocks be referred as pivot processes.
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If c1,c2 form a group and c2,c3 another, then if the pivot process is same for the two groups,
then transitivity holds as a result of which c1,c2,c3 also forms a group. If the pivot processes are
different but the groups have a common clock, then transitivity does not hold and this manifests
as a phase differenece of one, at the most, between processes synchronizing on non-common clocks
of the two groups having a common clock. Note that a group can be broken into subgroups if the
pivot process decides to drop out. In case of multiple pivot processes, sub groups are formed when
the last pivot process drops out.

Each group can be thought of as an abstract single clock such that a new process that joins any
of the constituent clocks effectively joins the group. Thus, the proofs of progress and starvation
freedom for a single clock can be directly applied to a group in the multi-clock synchronization. In
the following, we state the guarantees of synchronization provided by the protocol:
1) A process that synchronizes on multiple clocks can move to the next phase only when all the
processes in the group formed by the clocks have also completed their current phase.
2) Two clock groups that do not have a common pivot process but have a common clock may
differ in phase by atmost one. Note that it cannot exceed one because that would imply improper
synchronization between processes clocked on same clock which as has been proved above to be
impossible in our protocol.
3) A new process registered with multiple clocks starts in the next phase (from the perspective of
a local observer) w.r.t. each of the clocks individually.

6 Comparing with other Dynamic Barrier Schemes

The clock syntax resembles that of X10 but differs in the joining policy. An X10 activity that
registers with a clock in some phase starts the synchronization from the same phase. The advantage
of our dynamic joining policy (starting from next phase) is that when a process starts a phase, it
exactly knows the processes that it is synchronizing with in the phase. This makes it simpler to
detect the completion of a phase in a distributed set-up. Whether to join in same phase or next phase
is more a matter of semantics rather than expressiveness. If there is a centralized manager process
to manage phase synchronization, then the semantics of starting a newly registsered activity in
same phase is feasible. However, for a distributed phase synchronization protocol with dynamically
joining processes, the semantics of starting from next phase is more efficient.

The other clock related works [24], [23] are directed more towards efficient implementations of
X10 like clocks rather than dealing with synchronization in a distributed setting. Barriers in JCSP
[26] and occam-pi [25] do allow process to dynamically join and resign from barrier synchronization.
Because the synchronization is barrier specific in both JCSP ( using barrier.sync() ) and occam-
pi ( using SYNC barrier, it is a burden on the programmer to write a deadlock free program which
is not the case here, as the use of next achieves synchronization over all registered clocks. JCSP and
occam-pi barriers achieve linear time synchronization due to centralized control of barriers which
is also possible in the optimized version of our protocol.

Previous work on barrier implementation has focussed on algorithms that work on pre-specified
number of processes or processors. The Butterfly barrier algorithm [9], Dissemination algorithm [10][5],
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Tournament algorithm [5], [4] are some of the earlier algorithms. Most of them emphasized on how
to reduce the number of messages that need to be exchanged in order to know that all the pro-
cesses have reached the barrier. Some of the more recent works on barrier algorithms in software
are described in [6][11][13][18][15],[3].

As contrasted to the literature, our focus has been on developing algorithms for barrier synchro-
nization where processes dynamically join and drop out; thus, processes that can be in a barrier
synchronization need not be known a priori.

7 Conclusions

In this paper, we have described a solution for distributed dynamic phase synchronization that is
shown to satisfy properties of progress and starvation freedom. To our knowledge, this is the first
dynamic distributed multi-processor synchronization algorithm wherein we have the established
properties of progress, starvation freedom and shown the dependence of the progress on the entry
strategies (captured through process registration). A future direction is to consider fault tolerance
in the context of distributed barrier synchronization for dynamic number of processes.
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Aj ∈ Ai.Iconcurrent
Aj ∈ Ai.registered

Figure 3: Dynamic Phase Synchronization

A Brief description of Guarded Commands

1. (Multiple Assignment) x,y:= e1,e2 - denotes concurrent assignment of e1 and e2 to x and y
respectively.

2. (Guard) g - denotes quantifier free boolean expression.

3. (Guarded Selection) if g1 → S1[] · · · []gn → Sn fi - denotes nondeterministic selection. First,
gi’s, called guards, are computed at the entry and one of the branches corresponding to the
guard is true. is selected and starts the execution of Si. The command is said to terminate
when Si terminates.

4. (Guarded Iteration) do g1 → S1[] · · · []gn → Sn od - denotes the continued execution of the
underlying guarded selection till at least one of the guards is true. Thus, when all the guards
are false, the command terminates.

5. For simple iteration, we use the classical while loop: while b do S endwhile for the sake of
easy understanding.

B An Illustrative Description of the Solution

The solution achieves phase synchronization by ensuring that the set of processes that enter a phase
is a common knowledge to all the processes. This set is denoted by the variable Ai.Iconcurrent in
the protocol and the processes in it continue to work in phase till they drop from the synchroniza-
tion. After a process in Iconcurrent starts the phase, a fresh process wanting to join the phase
synchronization has to wait at least till the current phase is complete and at most could miss one
phase . Figure 3 illustrates that if Aj got included in Ai.registered between 1 and δ, where δ
denotes the point where local snapshot is taken and the phase numbers 1, 2, 3 . . . denote the com-
pletion of CONSOLIDATE, then Aj can start from phase 2, otherwise anything registered between
δ and δ′ will start in phase 3. (Due to the asynchronous nature of processes, a global observer
could observe that a process that intended to register in phase k via process j actually entered the
synchronization only in phase k +2 as it could not register with process j in phase k itself (it could
register only in phase k + 1 as explained later)).
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C Single Clock Proof

In this section, we provide a proof in semi-formal way in the style of [1]. The proof obligations for
synchronization and progress are given below. The symbol ‘7→’ denotes leads to.

• Synchronization

We need to show that the postcondition of SYNC;CONSOLIDATE; (corresponding to barrier
synchronization) for processes that have proceed set to true is :
{∀i, j((Ai.proceed = true ∧Aj .proceed = true) ⇒ Ai.executing = Aj .executing)}

• Progress
Property 1: The progress for processes already in phase synchronization is given by (k is
used to denote current phase) the following property which says that if all the processes have
completed phase k, then each of the processes move to a phase greater than k if they do not
drop out.
P1: {∀i(Ai.drop = false ∧ ∀j(Aj .drop = false ⇒ Aj .executing ≥ k) 7→ (Ai.executing ≥ k + 1))}
Property 2: The progress for new processes that want to join the phase synchronization is
given by the following property which says that a process that gets registered will join the
phase synchronization.
P2: {∃i((Ai.proceed = false ∧ ∃j(i ∈ Aj .registered)) 7→ Ai.proceed = true)}

C.1 Proof of Synchronization

The invariant that holds in the protocol is:
I1: {∀i(Ai.proceed = true ⇒ (∀j(Aj .proceed = true ⇒ (Ai.next ≤ Aj .next + 1 ∧ (j ∈ Ai.Iconcurrent ∨ Ai.next ≤
Aj .next)))))}

It can be easily checked that each clock operation maintains this invariant. We show that for
all processes involved in phase synchronization, following holds:
{I1 } SYNC {∀i, j((Ai.proceed = true ∧Aj .proceed = true) ⇒ (Ai.executing = Aj .executing∧
Ai.newIconcurrent = Aj .newIconcurrent))}
The initialization ensures that I1 is true and a process starts with the proper Iconcurrent set. Let
us look at the execution of the loops in the code block SYNC. The postcondition of the first do-od
loop can be shown to be ∀i, j((Ai.proceed = true ∧Aj .proceed = true) ⇒ Ai.next = Aj .next) which satisfies
the invariant. Let us see how this postcondition is obtained. The first guard ensures that another
process gets removed from Ai.Iconcurrent only when Ai.next ≤ Aj .next. By symmetry, we can arrive
at Ai.next = Aj .next ∨ j ∈ Ai.Iconcurrent. The rest of the guards do not change this. Note that if Aj

drops, then Aj .proceed is false, thus maintaining the invariant. The loop with guarded commands
exits for Ai when the only process left in Ai.Iconcurrent is itself. Thus, eventually we will have the
stated postcondition.

With Ai.next = Aj .next at the end of first do-od loop, the post-condition of the second do-od
loop can be shown to be:
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{∀i, j((Ai.proceed = true∧Aj .proceed = true) ⇒ (Ai.executing = Aj .executing∧Ai.newIconcurrent = Aj .newIconcurrent))}
The reasoning is simply that the guard checks for Ai.executing = Aj .executing which can be true only if
Ai and Aj have finished their first loop. At the end of the loop, Ai.newIconcurrent = Aj .newIconcurrent

is true because all the processes add/delete the same processes due to the common knowledge
achieved by the set denoted by Iconcurrent. The property Ai.newIconcurrent = Aj .newIconcurrent is
very important for processes to dynamically discover the processes that want to join the phase
synchronization and make it a common knowledge. The post-condition of second do-od is the
post-condition of SYNC.

The post-condition of CONSOLIDATE can now be easily shown to be:
{∀i, j((Ai.proceed = true ∧Aj .proceed = true) ⇒ Ai.executing = Aj .executing)}
Note that this includes the new processes that got flagged to proceed. Another important property
that holds after consolidatation is:
C1: A process knows the set of processes that it has to synchronize with for that phase.
This is because of the assignment Ai.Iconcurrent := Ai.newIconcurrent and the fact that all the new
processes in Ai.newsynchproc are assigned the same values as that of Ai before flagging them to
proceed.

C.2 Proof of Progress

Proof of Property 1:
We claim the following properties hold for a phase synchronization (In each of the properties, “i”
is a free variable signifying that the property holds for all i). A property of the form p ensures q is
proven for a program by showing that (1) for each statement s in the program, {p ∧ ¬q} s {p ∨ q}
holds, and (2) there is a statement t in the program for which {p ∧ ¬q} t {q} holds; the statement
t “establishes” the property. This notion of ensures has been used in [1]. A property is “stable” if
it continues to be true once it becomes true.

A0: {∀k(k ≥ 0 ⇒ (Ai.executing = k ∧Ai.next > Ai.executing))}
A1: {∀k(k ≥ 0 ⇒ (Ai.next ≥ k + 1 stable till Ai drops))}
A2: {∀k(k ≥ 0 ⇒ (Ai.next ≥ k + 1 ∧Ai.Iconcurrent = {Ai} ensures Ai.next > k + 1))}
A3: {∀k(k ≥ 0 ⇒ ((Ai.next ≥ k + 1 ∧ (∀j(Aj .drop = false ⇒ Aj .next ≥ k + 1))∧ {Ai} ⊂ Ai.Iconcurrent)

ensures (Ai.next ≥ k + 1 ∧ (∀j(Aj .next ≥ k + 1))∧ {Ai} ⊆ Ai.Iconcurrent)))}

It is straightforward to see that each property is suitable preserved by each statement in case
of ensures, that is, if the precondition of ensures is met, then the postcondition is also met. We do
not give the details for sake of brevity.

From A0-A3, we derive A4 given below for every i, such that Ai.drop = false and k ≥ 0.
A4: {(Ai.next ≥ k + 1 ∧ (∀j(Aj .drop = false ⇒ Aj .next ≥ k + 1)) 7→ Ai.next > k + 1}
Proof: A4 is proved by splitting it into A4.1 and A4.2 for the cases Ai.Iconcurrent = {Ai} and
{Ai} ⊂ Ai.Iconcurrent respectively and then applying disjunction:
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A4.1:

Ai.next ≥ k + 1 ∧ (∀j(Aj .drop = false ⇒ Aj .next ≥ k + 1)) ∧Ai.Iconcurrent = {Ai}
7→ {using A0 and A2}

Ai.next > k + 1

A4.2:

Ai.next ≥ k + 1 ∧ (∀j(Aj .drop = false ⇒ Aj .next ≥ k + 1)) ∧ {Ai} ⊂ Ai.Iconcurrent

7→ {usingA3, A5and the induction rule-finite sets are well founded under subset ordering}
Ai.next ≥ k + 1 ∧ (∀j(Aj .drop = false ⇒ Aj .next ≥ k + 1)) ∧Ai.Iconcurrent = {Ai}

7→ {Applying transitivity with A4.1}
Ai.next > k + 1

The disjunction proves A4 because by protocol design {Ai} ⊆ Ai.Iconcurrent. Now, we prove the
following property for all k ≥ 0:
P1’: {∀i(Ai.drop = false ∧ ∀j(Aj .drop = false ⇒ Aj .next ≥ k + 1) 7→ (Ai.next > k + 1))}
First consider k = 0 for clock c: Ac.next is initialized to 1 and Ac.Iconcurrent = Ac. By using A4, we
can deduce that the P1’holds for k=0.
Next, consider k > 0: By A1, we know that Ai.next ≥ k+1 and from I1 we know that ∀i : Ai.next ≥ k+1

during synchronization. Using A1, I1, and A4, the P1’ for k > 0 follows naturally for all i.
From A0 and A1, we deduce P1’⇒ P1.

Proof of Property 2 :
The second property of the proof of progress is for newly registered processes.
A5: {∀i(Ai.proceed = false ∧ ∃j(i ∈ Aj .registered) ensures

(i ∈ Aj .newsynchproc))}
A6: {∀i(Ai.proceed = false ∧ (∃j(i ∈ Aj .newsynchproc)) ensures

Ai.proceed = true)}

From A5-A6, we can deduce the progress property of a new process i. We first show: A7:
{(Ai.proceed = false ∧ ∃j(i ∈ Aj .registered)) 7→ Ai.proceed = true}

Ai.proceed = false ∧ ∃j(i ∈ Aj .registered)

7→ usingA5

i ∈ Aj .newsynchproc

7→ usingA6

Ai.proceed = true

Since Ai.proceed = false for new processes, the above can be written as
{∀i(Ai.proceed = false ∧ ∃j(i ∈ Aj .registered)) 7→ Ai.proceed = true)}

C2: There can be atmost a phase difference of one between registration and assignment to newsynchproc.
C3: There is a phase different of one from the time Ai is found in Aj .newsynchproc to the time that
it is flagged to proceed.
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Using C2 and C3, we can claim that if a process registers in phase k and assigned to newsynchproc

in k, then it will start the phase synchronization k + 1. But, if it gets assigned to newsynchproc in
k + 1 as is possible for Ac.registered set, then it will start from k + 2.
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