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Abstract—May-happen-in-parallel analysis is a very impor-
tant analysis which enables several optimizations in parallel
programs. Most of the work on MHP analysis has used forward
flow analysis to compute ”parallel(n)” — set of nodes which
may execute in parallel to a given node ”n” — including
those approaches that addressed the issue for dynamic barrier
languages. We propose a new approach to MHP analysis called
Phase Interval Analysis (PIA) which computes phase intervals,
corresponding to dynamic barriers, in which a statement
may execute. PIA enables us to infer an order between two
statements whenever it can establish that they can not execute
in parallel. Because the ordering relation is transitive, we
may also be able to infer indirect synchronization happening
between two statements, even when they do not share a
barrier. To the best of our knowledge, the issue of indirect
synchronization has not been addressed prior to this work.
We also compute condition functions under which different
instances of the same statement may not execute in parallel,
when the statements are nested within loops.

Keywords-Parallel programming, Data flow computing, Rea-
soning about programs

I. INTRODUCTION

With the emergence of parallel programming languages
like X10 [7] and Habanero-Java [5,6], may-happen-in-
parallel(MHP) analysis becomes very important, as precise
MHP analysis opens up doors for a plethora of optimization
opportunities and leads to more effective debugging tech-
niques for parallel programs.

The goal of MHP analysis is to compute a set M of pairs
of program statements, that may run in parallel during some
execution of the program. As MHP analysis is undecidable
in general [18], we would like to calculate the smallest set
M ′ such that M ⊆ M ′. Calculating the largest set Q, of
pairs of program statements which can not happen in parallel
achieves the same because M ⊆ Q̄, where Q̄ denotes the
complement set of Q. The more we infer that some pair of
nodes may not execute in parallel, the more optimization
opportunity it provides.

Earlier work [20] has focused on computing a set
parallel(n) for a node (or statement) n containing all the
nodes m which may execute in parallel with n. From now on
”m ‖ n” will denote the may-happen-in-parallel relationship
between m and n, whereas ”m ∦ n” will denote the can-not-
execute-in-parallel relationship between m and n. Problem

with establishing m ∦ n using techniques which relies on
computing a set parallel(n) has a drawback that even when
m ∦ n is established, we can not establish m < n or
n < m, denoting that m will always precede or succeed n
respectively. In addition to having information that m ∦ n, if
we can infer the order between two nodes m and n it would
open up opportunities for a plethora of optimizations.

Let us take a motivating example given in Fig. 1. Here,
async(c){S} denotes that a new activity (or thread) is
spawned asynchronously, which will execute the statement
S. The clock c indicates the barrier(s) the new activity would
inherit from its parent activity. A next statement indicates
a barrier synchronization point. An activity registered with
a set of barriers, will not progress beyond next until all
the activities registered with any of these barriers has also
arrived at their corresponding next. These constructs will
be explained in detail later on.

In the given code fragment, activity P spawns three new
activities named A, B and C which will execute the code
segments given in their corresponding braces. In addition,
A is registered with barriers c1 and c2, B is registered
with c1 and C is registered with c2. In Fig. 1, it is
easy to see that the statement labelled p1 will always
precede the statement labelled s3. Even though activities
B and C are registered with different sets of barriers, the
synchronization happens because they both share a barrier
with activity A. Because A and B share the barrier c1,
p1 will always precede t2. Similarly, t2 will precede s3
due to a common barrier c2 between activities A and C.
None of the earlier work [1,20] detects such an indirect
synchronization, because the set parallel(n) only consists of
those nodes which share at least one barrier with n. Hence,
even when one establishes t2 ∦ p1 and t2 ∦ s3, it fails to
establish that p1 ∦ s3 in the absence of an inferred order. If
we could infer an order between statements which can not
happen in parallel, it would lead to additional optimizations
in programs. For example, in Fig. 1, if we can infer t1 < p2

and p2 < t3, we can use copy propagation to establish
z = u at t3.

We propose a flow analysis called Phase Interval Analysis
(PIA) which will always be able to infer the order between
two statements m and n, whenever it can establish m ∦ n.



1 //activity P
2 async(c1,c2) { //activity A
3 t1: x=y;
4 next;
5 t2: ...
6 next;
7 t3: z=x;
8 }
9 async(c1) { //activity B

10 p1: ...
11 next;
12 p2:x=u;
13 next;
14 p3: ...
15 }
16 async(c2) { //activity C
17 s1: ...
18 next;
19 s2: ...
20 next;
21 s3: ...
22 }

Figure 1. A motivating example

We do this by labelling each node with a phase interval. This
interval denotes the minimum phase and the maximum phase
of the barrier during which a node can execute. Hence, a
phase interval of 〈a, b〉c denotes that a statement will execute
anywhere between the phase a and b of the barrier c. Each
time a barrier synchronization point next is encountered,
the barrier will have said to move to the next phase.

A statement in the program has multiple instances if it is
nested within loops. If m and n are nested within a common
set of loops L1, . . . , Ll then we need to infer whether
m[i1, . . . , il] < n[i′1, . . . , i

′
l]. To deal with such instances,

we compute a condition function φm<n in terms of instance
variables i1, . . . , il, i

′
1, . . . , i

′
l, such that whenever φm<n

evaluates to true, m will precede n for the corresponding
instance. This gives us additional opportunities when m < n
does not hold for all instances but only for some of the
instances.

A. Our Contributions

Having looked at the motivating example, we enlist the
contributions of this paper as follows :
• We propose a data flow analysis called Phase Interval

Analysis(PIA), which computes the phase interval of
a barrier within which a statement can execute. This
analysis is especially useful for languages with dynamic
barriers where activities can join or leave the barrier
any time.

• In addition to inferring m ∦ n, we also infer an order
m < n or n < m indicating which node would execute
first, giving an opportunity for more optimization.

• We compute condition functions φm<n under which
two nodes m and n or instances thereof, will precede
one another.

• The most important contribution is that PIA enables
us to infer indirect synchronization between two nodes
even when they do not share a barrier.

The rest of the paper is organized as follows. Section II
mentions the related work. Section III-A describes a lan-
guage having dynamic barriers as a synchronization con-
struct. Section III-B introduces program structure tree, state-
ment instances within nested loops and condition functions.
Section III-C describes the clocked control flow graph that
is used by phase interval analysis described in section IV.
Finally, section V summarizes the paper.

II. RELATED WORK

May happen in parallel analysis has been of interest since
the advent of parallel programming. MHP is undecidable in
general [18]. Under certain restrictions, MHP analysis for
the async-finish parallelism without dynamic barriers has
been shown to be in cubic time [13]. MHP analysis has
been studied in [9,15,16] for Ada, in [4,14,17] for Java and
explored in [1,12,20] for X10. Agarwal et al. used Program
Structure Tree (PST) for X10 programs [1] and then their
algorithm tries to compute condition vectors— which gives
equality constraints over instance variables — for which
given pair of statement instances1 can not run in parallel.
This paper enriches the notion of condition vectors with
condition functions with more expressive power. Context
sensitive MHP information is computed using type inference
in [12]. However, both [1] and [12] compute MHP in
the absence of clocks (dynamic barriers) for the async-
finish parallelism model. Computing MHP information for
languages with dynamic barriers, where activities can join
and leave the barrier any time, becomes a bit more difficult
than computing the same for static barriers. To the best
of our knowledge, MHP computation for dynamic barrier
languages has been addressed only in [20], which uses data
flow analysis on Clocked Control Flow Graphs (CCFG).
MHP information computed in their work focuses only on
statement pairs, therefore it misses on opportunities when
two statement instances can not run in parallel. As they do
not handle statement instances, they can infer m ∦ n only if
for all possible statement instances of m and n, they do not
execute in parallel. Therefore, their approach, though being
conservative, misses out on many optimization opportunities.
Phase Interval Analysis (PIA) described here computes con-
dition under which two statement instances will not run in
parallel. Concept of using intervals to conservatively capture
information flow in the program is not new and has been
studied in the setting of program verification in [8]. PIA
is an adaptation of abstract interpretation described in [8]
in the setting of MHP analysis for languages with dynamic
barriers. It is worth noting that the work presented here is
an attempt to capture some of the missed opportunities in
[1] and [20].

1A statement inside a loop can have multiple instances with different
MHP characteristics at different instances.



III. NOTATIONS AND BACKGROUND

This section lays the technical background and introduces
notations that will be used to describe the phase interval
analysis.

A. Abstract Dynamic Barrier Language

This section describes ADBL (Abstract Dynamic Barrier
Language), which is powerful enough to capture program-
ming constructs of languages with dynamic barriers such as
clocks in X10 [7] and phasers in Habanero-Java [5,6].

SyncStmt :: Finish | AsyncList | ClockStmt |
ClockedAsync

ClockStmt :: ClockVar := new clock() |
ClockVar.drop() | next

AsyncList :: Async AsyncList | ε
Async :: async{Stmt}
ClockedAsync :: async(ClockVarList) { Stmt }
Finish :: finish { AsyncList }
Stmt :: if(BExpr) Stmt else Stmt | do

Const times with V ar Stmt
od | while (BExpr) Stmt | Sync-
Stmt

Atomic :: atomic {SeqStmt}

ADBL has all the constructs of a sequential languages
denoted by SeqStmt like loops, sequence and branch. We in-
troduce two kinds of loop in the language. while introduces
a general loop, where as a do loop represents all those loop
for which it is possible to statically figure out the number of
times the loop will iterate before exiting. In another words,
the loop count is a static constant or a symbolic constant.
V ar in the do loop indicates the loop induction variable
which increases by 1 after each iteration and ranges from 0
to Const− 1. We will see later that such loops provides an
additional opportunity in asserting that two statements can
not execute in parallel.
• Clocks : Clocks act as dynamic barriers in ADBL.

Whenever an activity (thread) declares a new clock
using new clock(), that activity is said to have
created and registered with the clock (barrier). An
activity can deregister itself from the clock using a
drop() on that clock. An activity also implicitly
drops all the clocks that it is registered with, when it
finishes. Thus, number of activities participating in a
clock (dynamic barrier) may keep changing. Note that
an activity can not re-register to a clock which has
been dropped by it. Just like in earlier works, we
assume that the set of clocks in the program is given
by {c1, . . . , cr}.

• async : An async statement spawns an activity
which executes the given statement Stmt. Once this new
activity is spawned, it is completely independent from
its parent activity and can outlive it. A ClockedAync

inherits a set of clocks from its parent activity. This
increases the number of activities participating on an
existing clock (dynamic barrier). Note that apart from
creating a new clock this is the only other way to
register with a clock. At this point of time, the parent
activity has to be registered with the clock which it
passes on to the child activity.

• finish : A finish statement is said to terminate
only when all the activities transitively spawned from
its scope terminates. In some sense this construct acts
in a similar fashion to join() in Java. A finish can
not spawn a ClockedAsync within its immediate scope.
This prevents deadlock from happening due to cyclic
dependence between a child waiting for a clocked
parent, and parent waiting for the child to terminate
so that its finish can terminate.

• next : A next indicates a barrier synchronization
point. An activity registered on a set of clocks C, will
wait for all other activities registered on any subset of
C, to reach the corresponding synchronization point.
After this synchronization, a clock is said to have
advanced by one phase. Since, next advances all
the clocks an activity is registered with, it prevents a
deadlock of the following kind. Instead, if we allow
ClockVar.next, two activities registered on clocks
c1,c2 may execute c1.next; c2.next in differ-
ent order and run into a deadlock. An important point
to note that if an activity is not registered on any clock
while it encounters next then the program raises an
error.

• atomic : This construct allows the statements in its
body to be run in complete isolation and atomically
with respect to the rest of the program. This is the
reason why atomic does not allow any SyncStmt
inside its body. Only the sequential subset of ADBL
(similar to any sequential programming language) is
allowed inside an atomic. Note that SeqStmt inside
an atomic can not happen in parallel with any other
statement or node making it trivial to compute MHP
information for these blocks. Hence, for the rest of the
paper, we will only focus on those parts of the program
which are outside an atomic. We include atomic in
ADBL for the sake of completeness as this is the only
construct providing isolation and mutual exclusion in
an ADBL program.

B. Program Structure Tree and Condition Functions

We have described ADBL in the previous section. This
section describes Program Structure Tree (PST) , used in one
of the earlier approaches of MHP analysis in the presence
of async and finish constructs but without clocks. We
also introduce the notion of condition functions here. From
now on, we will use the terms statement and node (a basic
block containing the statement) interchangeably.



Definition 1: A node n1 is said to be a PST child of
another node n2 if and only if the statements corresponding
to node n1 are in the immediate lexical scope of n2.

For the code fragment shown in Fig. 2, corresponding
PST is given in Fig. 3.

Definition 2: For two statement in-
stances S1 [i1, . . . , il, j1, . . . , jm] and
S2 [i′1, . . . , i

′
l, k1, . . . , kn], condition function

φn1<n2(i1, . . . , il, i
′
1, . . . , i

′
l, j1, . . . , jm, k1, . . . , kn)

provides the condition in terms of
i1, . . . , il, i

′
1, . . . , i

′
l, j1, . . . , jm, k1, . . . , kn under which

node n1 corresponding to statement S1 will precede
n2 corresponding to statement S2 in the execution.
Here, S1 and S2 have common loops L1, . . . , Ll.
In addition, S1 is enclosed in loops LJ1, . . . , LJm
and S2 is enclosed in loops LK1, . . . , LKn. Here,
i1, . . . , il, i

′
1, . . . , il, j1, . . . , jm, k1, . . . , km are instance

variables. Similarly φn1>n2
and φn1∦n2

can be defined.
The following code fragment gives an example of S1 and
S2 inside loops as shown in definition 2.
L1:
....

Ll:
async{

....
LJ1:
....

LJm:
...
S1;
...
}

async{
.....
LK1:

...
LKn:

...
S2

}

There has been two different approach for MHP analysis
in async-finish parallelism which does not take into account
dynamic barriers (clocks). PST based approach given in [1]
uses condition vectors to specify conditions under which two
statement instances are guaranteed not to execute in parallel.
On the other hand, the approach given in [12] uses type
inference to compute context sensitive MHP information.
Approaches dealing only with the async-finish parallelism
provides a conservative solution even in presence of dynamic
barriers. For that reason, either of the two approaches given
in [1] or [12] can be used for preprocessing. Since the later
is costlier in terms of time complexity, we recommend using
the approach given in [1]. Similar approach is used in [20]

for the preprocessing. MHP information computed by the
approach given in [1] is used as starting point to compute
additional information in presence of dynamic barriers in
[20] as well as in PIA which shall be described later.

C. Clocked Control Flow Graph

In this section we describe Clocked Control Flow Graph
(CCFG) using which we will perform Phase Interval Anal-
ysis (PIA) using forward data flow analysis technique.

Fig. 4 shows a code fragment and Fig. 5 shows the
corresponding CCFG. CCFG is similar to any control flow
graph with the following additions.
• In addition to every procedure of the program, every
async and finish has an entry and an exit node.

• async nodes branch out a new control flow as shown
in Fig. 5.

• All clock related operations next, c=new clock(),
c.drop are in a separate block containing this single
statement.

• If a node defines a new clock using c=new clock()
then it is labelled with the clock c in addition to other
clocks it might receive from its predecessors.

• A node is labelled with the intersection of the sets of
clock that it receives from its predecessors.

• If a node drops a clock using c.drop then c is removed
from its label.

• An entry node of a clocked async is labelled with
the set of clocks passed to it. Observe in Fig. 5, how
two different async receives c1 and c2 respectively.
Remember that language semantics does not allow an
async to be registered with clock c if its parent activity
is not registered with c at that moment. Doing so would
result in an invalid program.

IV. PHASE INTERVAL ANALYSIS

In this section we describe a data flow analysis which we
call Phase Interval Analysis (PIA).

Definition 3: A phase interval 〈a, b〉c associated with a
node n with respect to a reference node R denotes that n
will only execute in relative clock phases {a, a + 1, . . . , b}
of a clock c. By relative clock phase we mean that, if the
reference node R executes in phase 0 of clock c ( interval
〈0, 0〉c)) then n can only execute in one of the phase from
a to b. In that sense, the phase interval computed is relative
to the reference point.

Once we have obtained CCFG and PST as described in
earlier sections, we can compute phase intervals for nodes of
interest. Given two nodes n1 and n2, we find out their least
common ancestor Ap in PST. Focus only on the subgraph
Gp of CCFG induced by descendants of Ap. In another
words, take into consideration only the nodes in the lexical
scope of Ap. Next, we take the least common ancestor Aq

of n1 and n2 in this subgraph Gp of CCFG. Take Aq as a
reference node and give it a phase interval of 〈0, 0〉 for the



if(b)
{

while(b1)
{

s1;

}
}
else
{

s2;
}

Figure 2. Code fragment for PST example

if

while

s1

s2

Figure 3. PST example

main()
{

s1;
finish {

async {
c1=new clock();
c2=new clock();
async(c1)
{ t1; next; t2; }
async(c2) {
p1;
if(b)
{ next; }
else
{ c2.drop; }
p2;
}

s2; next; s3;
}

}

}

Figure 4. Code fragment for CCFG example

entry

s1

finish begin

finish end

exit

async entry

c1=new clock()

c1

c2=new clock()

c1,c2

c1,c2

c1,c2

s2

c1,c2

next

c1,c2

s3

c1,c2

async exit

async entry
c1

t1
c1

next
c1

t2
c1

async exit

async entry
c2

p1
c2

if(b)

c2

next
c2

c2.drop

p2

async exit

Figure 5. CCFG example

clocks shared by n1 and n2. Now, the data flow proceeds
by computing the minimum and the maximum number of
barrier synchronization next encountered along all paths to
a node from the reference point.

Algorithm 1 computes PIA for nodes of interest n1 and n2
with respect to their least common ancestor Aq . The analysis
holds only if Aq is registered on some set of common clocks.
If not, n1 and n2 does not share a clock. For such a pair
of nodes, we may be able to infer an order via indirect



Algorithm 1 PIA
1: input: Subgraph Gp of CCFG induced by nodes inside the scope of

Ap ( least common ancestor of n1 and n2 in PST )
2: output: Phase intervals for all nodes in Gp.
3: Aq ← LEASTCOMMONANCESTOR(n1, n2, Gp)
4: The following portion is repeated for every clock c common to n1

and n2.
5: PHASEINTERVAL(Aq) ← 〈0, 0〉
6: Gpb ← Gp\ all the backedges
7: for n in the topological sort of Gpb do
8: a← mini∈parent(n,Gpb)

PHASEINTERVAL(i).first
9: b← maxi∈parent(n,Gpb)

PHASEINTERVAL(i).second
10: if n is a next node then
11: PHASEINTERVAL(n) ← 〈a+ 1, b+ 1〉
12: else if n is a drop node for clock c then
13: PHASEINTERVAL(n) ← 〈a,∞〉
14: else if n is a looptail node then
15: Let h be a corresponding loophead node
16: 〈ha.hb〉 ← PHASEINTERVAL(h)
17: h.oneiter ← 〈a− ha, b− hb〉
18: if h is a do loop then
19: PHASEINTERVAL(n) ← 〈(a− ha)h.itercount+ ha, (b−

hb)h.itercount+ hb〉
20: else
21: PHASEINTERVAL(n) ← 〈ha,∞〉
22: end if
23: end if
24: end for

synchronization which we shall discuss later. We take Aq

as a reference point, and we compute phase intervals only
with respect to this reference point and the clocks that are
common to n1 and n2. We initialize Aq to 〈0, 0〉 (line 5).
We ignore all the backedges, as we shall discuss later how
to handle loops by having some extra information attached
to the nodes in the loop. Ignoring the backedges gives us
a directed acyclic graph. The nodes are now topologically
sorted and will be processed in that order(line 7). Now, for
each node n, we set the lower bound to be equal to the
minimum of all the incoming nodes and upper bound to be
the maximum of all the incoming nodes (line 8-9). When
we have a next node, we add 1 to this bound, as next
is the only construct advancing a phase(line 11). We set
the upper bound to ∞ when we encounter a drop on the
clock, as after an activity drops out of a clock, it can not be
determined in which phase a node of that activity will be
executed (line 13).
n1 and n2 can be surrounded by loops which requires a

special care. As a preprocessing, we augment all the loops
to have a loophead and looptail node. Control flow graph
of a normal loop looks like the one shown in Fig. 6. We
transform it into the one shown in Fig. 7. Loop header
can easily be identified by standard analysis techniques. We
call it the loophead of the loop. Then, introduce a dummy
node called looptail which immediately follows the loop.
A dotted line (an order edge) shown in Fig. 7 is added
from the last node of the loop, just to ensure that looptail
is processed, after all the nodes which are inside the loop,
when we topologically sort the nodes. The last node within

the loop is the one which has a backedge going to the
loophead and all the other nodes in the loop can reach it
without going through loophead. Alternatively, one can add
order edges from all the nodes belonging to the loop to the
looptail. In addition, dashed line in Fig. 7 matches looptail
and loophead making it easier to reach from one to the other.
The moment looptail is encountered, we know how many
phases can pass in one iteration of the loop by calculating the
difference in the intervals of looptail and loophead(line 17).
In loophead we store the information itercount which says
how many times the loop will execute in case of do loops.
From this, we can calculate in which phase looptail will
start its execution (line 19). If it is a while loop, we may not
be able to compute how many iteration it will take because
it is undecidable in general [19]. Therefore, we calculate a
conservative bound for looptail by taking the lower bound to
be the lower bound of the corresponding loophead , taking
into account the possibility of 0 iterations, and the upper
bound to be ∞(line 21).

Within the scope of Aq if n1, having phase in-
terval of 〈a, b〉, is nested within loops LJ1, . . . , LJm
with phase intervals at the heads of these loops being
〈a1, b1〉, . . . , 〈am, bm〉, then the phase interval for a state-
ment instance n1 [j1, . . . , jm] can be given by

〈a1, b1〉+
m−1∑
i=1

(〈LJi.oneiter〉ji + 〈ai+1 − ai, bi+1 − bi〉) +

〈LJm.oneiter〉jm + 〈a− am, b− bm〉

The way it works is as follows. Calculate the interval
corresponding to the number of times the outermost loop
completes j1 iterations using 〈LJ1.oneiter〉j1. Then move
on to the head of the next loop LJ2 by adding the interval
difference between the head of LJ2 and LJ1 and then repeat
the same process.

Here, additions and subtractions over the interval is pair-
wise and a scalar multiplied to the interval indicates that it
is multiplied to both upper as well as lower bound.

〈a1, b1〉+ 〈a2, b2〉 ≡ 〈a1 + a2, b1 + b2〉

〈a, b〉C ≡ 〈a ∗ C, b ∗ C〉

An example is given in Fig. 8 shows how these intervals are
calculated when a statement is nested within multiple loops.
The second loop l2 has a next within a branch causing
〈0, 1〉 for one iteration of that loop. The statement following
the loop l2 gets the interval 〈0, N2〉 as the loop can iterate
exactly N2 times. The following next advances the phases
by 1. An async following it creates a branch in the control
flow which does not return, hence at the end of loop l1, the
interval remains 〈1, N2+1〉. i1-th instance of async will be
generated after loop l1 has completed i1 iterations2, hence

2instances are counted from 0 as mentioned in the ADBL do loop
description



head

stmt

Figure 6. Flow graph of a loop

the async gets the interval 〈1, N2 + 1〉+ 〈1, N2 + 1〉 ∗ i1.
Similar, argument goes when s1 is nested inside l3 and in the
end it gets 〈1, N2+1〉+〈1, N2+1〉∗i1+〈1, 1〉∗i3+〈1, 1〉.

Once we have phase intervals for n1 and n2, we may be
able to come up with an ordering as follows :

1) Let the set of common clocks between n1 and
n2 be c1, . . . , cr. Let phase intervals associated
with n1 and n2 be 〈xc1 , yc1〉 . . . 〈xcr , ycr 〉 and
〈zc1 , wc1〉 . . . 〈zcr , wcr 〉 respectively.

2) We can now generate the condition for their ordering

in the following manner. φn1<n2 ←
r∧

i=1

yci < zci .

Similarly, condition function φn1>n2
can be com-

puted. The condition function mandates that the upper
bound for n1 must be less than the lower bound for
n2 for all the clocks under consideration. If, n1 and
n2 are not nested inside loops within the scope of Aq

then all the intervals would have constant bounds in
the interval making it possible to determine whether
the condition function evaluates to true or false.

3) If Aq itself is nested within loops L1, . . . , Ll then we
augment the condition function with the condition that
the instance of n1 and n2 should come from the same

iteration of these common loops
l∧

j=1

ij = i′j .

An alternate way to look at the phase interval computation
is using inference rules as shown in Fig. 9. Rule for SKIP
captures the effect of statements which does not have any
synchronization or parallel constructs like async,finish,
next etc. It says that any such statement (e.g. x = y+z ) can
be treated as skip and has no effect on the phase interval.

head

tail

stmt

order

Figure 7. Modified flow graph for a loop for PIA

SEQ indicates the natural sequential composition of intervals
of statements s1 and s2. next is the only statement which
increments the phase interval to indicate the phase change.
A clock can advance its phase only through next. ITE rule
describe the natural way to merge two disjoint control flow
paths. The computation can take any one of the two path
hence it is conservative to say that when the paths merge,
the minimum phase that a clock could be in is the minimum
of the two. Similar argument goes for the upper bound of
the interval. ASYNC poses an interesting case. The interval
does not change because async starts a new computation
along a separate control flow path. Any changes in the clock
phase along that path has no direct effect on the phase
change along the current path. FINISH also does not change
the interval, because according to the language semantics
given in section III-A, a finish can only have a set of
non clocked async. Hence, any child activity transitively
spawned within finish can not share a clock with the activity
in which finish is executing. LOOP-INST dictates that
if any statement s forming the body of the loop (do or
while) which starts executing in interval 〈a, b〉 and finishes in
interval 〈a1, b1〉 then the i-th instance has to start and finish
with intervals described by the rule. For a general looping
construct when it is not possible to statically determine the
number of iteration it might take before the completion of
the loop, it is natural to declare that the upper bound of the
phase interval could be ∞ as noted in LOOP-GEN. LOOP-
COUNT however, gives the phase interval at the end of the



1 async(c) // <0,0>
2 {
3 l1 : do N1 times with i1 { // <0,0> , oneiter<1,N2+1>
4 l2: do N2 times with i2 { // <0,0>, oneiter<0,1>
5 if(b) { next; }
6 } od //enddo:l2 <0,1>
7 // <0,N2>
8 next; // <1,N2+1>
9 async(c) // <1,N2+1>, finally : <1,N2+1> + i1*<1,N2+1>

10 {
11 l3: do N3 times with i3 { //<1,N2+1>, oneiter<1,1>
12 next;
13 s1; // <2,N2+2>, finally : <1,1> + i3*<1,1> + <1,N2+1> + i1*<1,N2+1>
14 }od //enddo:l3 <2,N2+2>
15 //<1,1>*N3 + <1,N2+1>
16 }
17 } od //enddo:l1 <1,N2+1>
18 // <1,N2+1>*N1
19 }

Figure 8. Phase Interval Analysis for nested loops

〈a, b〉 skip〈a, b〉
(SKIP)

〈a, b〉s1〈a1, b1〉 〈a1, b1〉s2〈a2, b2〉
〈a, b〉s1; s2〈a2, b2〉

(SEQ)

〈a, b〉next〈a+ 1, b+ 1〉
(NEXT)

〈a1, b1〉s1〈a2, b2〉 〈a1, b1〉s2〈a3, b3〉
〈a, b〉if b then s1 else s2〈min(a2, a3),max(b2, b3)〉

(ITE)

〈a, b〉s〈a1, b1〉
〈a, b〉async{s}〈a, b〉

(ASYNC)

〈a, b〉s〈a1, b1〉
〈a, b〉finish{s}〈a1, b1〉

(FINISH)

〈a, b〉s〈a1, b1〉 loop s

〈(a1 − a)i+ a, (b1 − b)i+ b〉si〈(a1 − a)(i+ 1) + a, (b1 − b)(i+ 1) + b〉
(LOOP-INST)

〈a, b〉s1〈a1, b1〉
〈a, b〉while(b)s1〈a,∞〉

(LOOP-GEN)

〈a, b〉s〈a1, b1〉
〈a, b〉do N times with i s〈(a1 − a)N + a, (b1− b)N + b〉

(LOOP-COUNT)

〈a, b〉c c.drop()〈a,∞〉c
(DROP)

Figure 9. Inference rules for PIA

loop, when it is possible to statically determine the number
of iterations that the loop might take. DROP indicates that
whenever a clock c is dropped, upperbound of the phase
interval goes to infinity. The reason is that other activities
might be still registered with that clock. However, once the
clock is dropped, there is no way to infer in which phase of
the clock the statement may execute. The statement, which
drops the clock is guaranteed to execute in or after the
lower bound associated with it. Hence, all the statements
that follow along this control flow path will respect this
lower bound.

The advantage of using phase intervals is that it can be
computed for each statement separately with respect to some
reference point. So, for every procedure one can assume that
the phase interval is 〈0, 0〉 at the beginning. With respect to

that, phase intervals associated with each statement can be
computed in isolation of other procedures. Once such an
analysis is done for a procedure, say foo, whenever foo is
called with some phase interval 〈a, b〉, all we need to do is
shift (add) intervals associated with each statement inside
foo by 〈a, b〉. Computation from the scratch is not needed.
As shown in Fig. 10, if control can enter foo with phase
interval 〈a2, b2〉 and if starting from 〈0, 0〉 foo finishes with
phase interval 〈af , bf 〉 then in the calling context of bar ,
foo will finish with phase interval 〈a2 + af , b2 + bf 〉. If
some other statement s4 has an interval 〈a4, b4〉s4〈a′4, b′4〉
with b′4 < a2, we know that s4 will precede this instance
of foo hence they can not be executed in parallel. This also
saves us the trouble of figuring out whether any statement
inside this instance of foo may execute in parallel with



//<a1,b1>
int bar()
{
s1
s2
//<a2,b2>
foo()

//<a2,b2> + <af,bf> = <a2+af,b2+bf>
s3
}

Figure 10. PIA for context sensitive analysis

s4 or not. Compared to earlier approaches, PIA (phase
interval analysis) gives the advantage of context sensitive
MHP analysis without inlining the procedures.

Proof of correctness : Algorithm 1 maintains an invariant
that lower bound is equivalent to the minimum number
of next encountered by any control path from Aq and
the upper bound is equivalent to the maximum number of
next encountered by any control path from Aq to the node.
Hence, the intervals calculated are correct with respect to the
reference node Aq and the instance of the clocks associated
with Aq . Let us assume that there are at most r different
declaration for the clocks. Note that any of these declarations
may be inside a loop giving rise to many instances associated
with the same clock variable. We need to show that the order
established between nodes n1 and n2 is with respect to the
same instance of the clock. We take care of it by adding the

constraint
l∧

j=1

ij = i′j when Aq is within the scope of loops

L1, . . . , Ll ensuring that the order computed is always with
respect to the clock instance associated with the reference
point Aq .

Complexity Analysis : Algorithm 1 proceeds by first
computing a topological sort on the subgraph. Topological
sort of a directed acyclic graph requires O(e) time where e
is the number of edges. For any reducible graph produced
by structured programming constructs O(n) = O(e) [2,10]
where e is the number of edges and n is the number of nodes
or vertices. Phase interval information flows through edges
only once, making the processing time for O(n) nodes to
be O(n) making amortized constant time required for each
node. Finding the phase interval for instances require O(h)
time where h is the height of PST as that is the maximum
number of nested loops we can have. This is done for every
clock requiring O(r) processing time. Hence, for a single
node, entire process requires (O(1) + O(h))(O(r)). There
are O(n2) pairs making the total complexity to be O(n2rh).
Since, r is the number of different clock declarations, in
practice it would be much smaller than the total number of
nodes (r � n) making the complexity to be Or(n2h). This

is clearly an improvement over earlier work [20] having a
complexity bound of O(n4).

Indirect Synchronization : Let us take an example shown
in Fig. 1. Activity B and C does not share a clock, making
it impossible to infer ordering in a direct manner. However,
advantage of having an ordering is that it is transitive. Using
algorithm 1 we can infer that p1 < t2 as well as t2 < s3.
Making it possible to infer that p1 < s3. Only condition
is that the analysis has to have been done using a common
reference point for all nodes. Condition function for p1 < s3
in this case would be φp1<t2∧φt2<s3 . In the given example,
condition functions evaluates to true. In general, for nodes
n1, . . . , nk, we can infer n1 < nk if with respect to a
common reference point we have ∀k−1i=1 ni < ni+1. The

condition function would just be
k∧

i=1

φni<ni+1
.

There could be times when the static evaluation of the
condition function may not be possible. Even then, compiler
can generate the code in a manner shown below, where the
optimization is conditional depending upon whether condi-
tion function is true at runtime. Compiler can introduce
auxiliary variables in the generated code to capture instance
variables in the condition functions if needed.

if (φn1∦n2
)

generateOptimizedCode()
else

generateNormalCode()

V. SUMMARY

MHP analysis opens up a lot of optimization and de-
bugging opportunities for parallel programs. Application
of MHP analysis in concurrent static single assignment,
global value numbering, loop invariant detection and data
race analysis for parallel programs has already been shown
in [20]. The more precise an MHP analysis is, the more
optimization opportunity it provides. In this paper we have
introduced a new analysis for parallel programs with dy-
namic barriers called Phase Interval Analysis. PIA improves
over earlier work [20] by being able to compute condition
functions under which two statement instances may not
execute in parallel. Condition function is an enriched notion
of condition vectors introduced in [1]. Reasoning about
statement instances in presence of dynamic barriers was not
handled by any of the earlier work. As PIA allows us to
infer ordering between statements, it enables us to capture
indirect synchronization as well which was not possible so
far. PIA is a generic analysis technique which can be adapted
to various programming languages like X10 and Habanero-
Java.

REFERENCES

[1] Shivali Agarwal, Rajkishore Barik, Vivek Sarkar, and Rudra-
patna K. Shyamasundar. May-happen-in-parallel analysis of



x10 programs. In PPoPP ’07: Proceedings of the 12th ACM
SIGPLAN symposium on Principles and practice of parallel
programming, pages 183–193, New York, NY, USA, 2007.
ACM.

[2] A. V. Aho and J. D. Ullman. Node listings for reducible flow
graphs. In Proceedings of seventh annual ACM symposium on
Theory of computing, STOC ’75, pages 177–185, New York,
NY, USA, 1975. ACM.

[3] R. Barik and V. Sarkar. Interprocedural load elimination
for dynamic optimization of parallel programs. In Parallel
Architectures and Compilation Techniques, 2009. PACT ’09.
18th International Conference on, pages 41–52, Sept. 2009.

[4] Rajkishore Barik. Efficient computation of may-happen-in-
parallel information for concurrent java programs. In LCPC,
pages 152–169, 2005.

[5] Rajkishore Barik, Zoran Budimlic, Vincent Cavé, Sanjay
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